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Kinetic theory for momentum-dependent scattering
GÖTZ Niklas

Résumé

À partir du cadre de la théorie du champ effectif Color Glass Condensate, il est présenté com-
ment obtenir une description des collisions d’ions lourds dans un montage de théorie cinétique
afin d’étudier le processus de thermalisation de l’état de la matière dense gluonique vers un état
d’équilibre. En cela, l’équation de Boltzmann avec des interactions scalaires élastiques de type
point peut être généralisée pour inclure la condensation de Bose-Einstein. Il est présenté com-
ment améliorer cette approche numérique afin de prendre également en compte les amplitudes de
diffusion dépendant de la quantité de mouvement sans avoir à résoudre les intégrales complètes
à cinq dimensions. Cela permet d’analyser le comportement des premiers états après la collision
dans des conditions plus réalistes. De nombreux exemples d’applications de cette amélioration
sont donnés, permettant de mieux comprendre l’influence de différentes plages de quantité de
mouvement sur le processus de condensation, l’importance de la masse de tamisage pendant les
premiers temps de l’évolution et l’effet de l’amplitude de diffusion sur la vitesse de thermalisation.
Plusieurs propositions d’améliorations supplémentaires sont présentées.

Abstract

Starting from the Color Glass Condensate effective field theory framework, it is presented how
to reach a description of heavy ion collisions in a kinetic theory setup in order to investigate the
thermalization process of the dense gluonic matter state towards an equilibrium state. In this,
the Boltzmann equation with elastic point-like scalar interactions can be generalised to include
Bose-Einstein-condensation. It is presented how to improve this numerical approach in order to
also consider momentum-dependent scattering amplitudes without having to solve the full five-
dimensional integrals. This allows to analyse the behaviour of the early states after the collision
under more realistic conditions. Multiple examples for applications of this improvement are given,
leading to insights about the influence of different momentum ranges on the condensation process,
the importance of the screening mass for early times of the evolution and the effect of the scattering
amplitude on the thermalization speed. Several proposals for further improvements are given.
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Introduction

The “strong interaction” is special due to its non-perturbative and non-linear nature. As a con-
sequence, quarks and gluons as well as any colored excitations in general cannot be detected directly
by experiments, as they must be confined into color-singlets, such as mesons or baryons. For high
temperatures however, fundamental degrees of freedom should be accessible due to the asymptotic
freedom of Quantum Chromodynamics (QCD), the gauge theory of the strong interaction. They al-
low to probe properties of hot and dense matter with manifested quarks and gluons for high energies.
This is realised with modern heavy-nuclei colliders. Such collisions pose a challenge to the theoretical
description in QCD, as hard short distance processes as well as non-perturbative long distance soft
physics are involved. This motivated the collection of experimental data.

During the past years, ultra-relativistic heavy ion collisions both a the RHIC in BNL and at the
LHC in CERN have accumulated a great amount of information on properties of strongly interacting
quark-gluon matter in QCD. In this process, a Quark Gluon Plasma (QGP) consisting of quasi-free
quarks and gluons is formed, which is a nearly thermal state and experiences hydrodynamic expan-
sion [1]. It represents a testing ground for the Standard Model, as well as for finite temperature field
theory and possible grand unification theories. It is also of cosmological significance, as the early
universe (around a age of 10 microseconds and a temperature higher than 150 MeV) was dominated
by this phase of matter [2]. The QGP expands in a viscous-hydrodynamic way and eventually cools
down enough to hadronize into the hadronic gas that further expands and ultimately cools down fur-
ther into individual hadrons, which are finally measured by detectors. However, it has been proven
to be challenging to understand the thermalization mechanism that leads to the QGP forming from
a dense gluonic matter state, nicknamed "Glasma", on the basis of the first principles of QCD, as
there is an interplay of several overlapping time scales. This Glasma is a short-lived state, described
by purely longitudinal strong color fields.

As mentioned hydrodynamics has been shown to be an excellent phenomenological description of the
processes leading to hadronization and requires rapid thermalization at a timescale below 1 fm/c ([1,
3]), implying strong interactions, which is in conflict with the high momentum scale of the initial
state. The typical momenta of the nuclei are of the saturation scale QS , which grows with beam
energy and the size of the used nuclei. Because it is the only relevant time scale in the problem, the
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Introduction

formation time of gluons after the collision is of order 1/QS [4]. A perturbative QCD approach implies
that the following thermalization time (and by this the time of onset of hydrodynamical behaviour)
is of order α−

13
5

S Q−1
S for QS being large compared to the QCD-scale ΛQCD [5]. For the experiments

done at RHIC, QS is about 1 - 2 GeV, which leads to an estimate of thermalization time of several
fm/c for a coupling of order one, which is the case for this perturbative approach as one uses very
high energies or very large nuclei. This clearly shows that this so called "bottom up" approach is not
satisfying as it is not in agreement with the RHIC data and a non-perturbative approach is needed.
It is still in question if the perturbative approach is able to describe thermalization at all [6], as the
bulk of particle production processes is of low momentum and the characteristic momenta decrease
with time due to the expansion. Even the hard scale interactions are not necessarily perturbative
in the sense of loop expansion, as often resummations are required. Therefore, other candidates for
an early thermalization mechanism have to be considered, such as approaches based on AdS/CFT
correspondence, where the thermalization appears as a formation of a black hole horizon in the dual
theory [7–10].

Other ways to investigate the thermalization are built up on he framework of Color Glass Condensate
(CGC) effective theory [11], in which the evolution of the gluon fields in leading order of the strong
coupling constant g2 behaves like the collision of coherent classical Yang–Mills fields [12]. The CGC
describes the initial condition before and at the time of the collision, as well as the short time after the
collision. It approximates the description of the fast partons in the wave function of a hadron by using
the fact that their dynamics is slowed down by relativistic effects, and provides a way to track the
evolution of states with energies that are relevant in the dense regime. In the McLerran-Venugopalan
model (CGC at lowest order, with a local Gaussian distribution of color source) description, the
Glasma does not show the required behaviour [13]. At this order, the energy-momentum tensor has
a negative longitudinal pressure, and by this does not agree with the hydrodynamical description of
the expansion and never isotropizes. It is therefore necessary to go beyond lowest order. During this,
a resummation process becomes necessary. Instabilities similar to plasma instabilities occur here, of
which the origin is not clear yet ([13, 14]). They play a key role of higher orders during the resumma-
tion process. There are multiple approaches of performing the resummation in form of a numerical
approximation. One is based on the Boltzmann equation in the context of kinetic theory from the
Dyson-Schwinger equations. In the regime of large occupation numbers, classical field theory and
kinetic theory essentially describe the same dynamics [15]. The collision term is expressed in terms
of self-energies in the Schwinger-Keldysh formalism and allows to assess the behaviour of the under-
lying quantum field theory. This can be then solved numerically. This approach has been proven
to be a much less costly of investigating the process of thermalization than other approximations,
like the Classical Statistical Approximation (CSA) [16]. Additionally, it helps to gain an intuitive
understanding from its connection to statistical physics.

A Boltzmann solver for a elastic, isotropic and spatially homogeneous φ4 interaction for the CGC
was presented in [17], on which this work is based. There, solving the Boltzmann equation nu-
merically in an efficient way required the reduction of a 5- into a 2-dimensional integral, for which
strict assumptions had to be made. An alternative way to do this is a desirable goal, in order to
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Introduction

cover a greater amount of cases, opening the way to include more realistic scattering amplitudes into
the simulation and by this to study more relevant processes. This will be the central task of this work.

Chapter 1 reviews the derivation of the CGC, starting by describing the kinematics of heavy ion
collisions and describing the need of resummation for NLO observables. It is demonstrated how the
problem of thermalization arises in the context of the CGC, inspired by [18]. Chapter 2 outlines
the derivation of the Boltzmann equation in the context of kinetic theory, especially the gener-
alisation of including the possibility of forming a Bose-Einstein condensate. This is necessary as
heavy-ion-collisions produce overoccupied initial conditions. Chapter 3 summarises the work done
in [17], starting by explaining the general setup of the simulation as well as discussing important
questions about the right discretization and methods to ensure a constantly high accuracy of the
calculations. In a second step, chapter 3 demonstrates the original and the new alternative way
of calculating the collision kernel and by this allowing more realistic simulations in exchange for
slightly higher computational costs. It is explained how to restore the Mandelstam variables during
the calculation. Chapter 4 presents applications of the improved simulation, and their implications
to the problem of thermalization, which give several insights especially about the crucial role of the
screening mass, the role of different momentum ranges on the condensate evolution (and by this on
the whole thermalization process) as well as on the speed of thermalization.
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Chapter 1
The Color Glass Condensate

1.1 Heavy nuclei at high energy

CGC is an effective field theory, that means, an approximate description of the underlying quantum
field theory for a specific energy range. This leads to a reduction of parameters (by integrating them
out or using symmetries) and by this simplifies the description of the model, which is especially
interesting for underlying theories which are otherwise hard to treat. On the other hand, it limits
the situations where the theory can be applied. In the case of CGC, one is restricted to collisions
between heavy hadrons/nuclei at very high energy. The advantage of a high energy collision is that,
due to the time dilation, the interactions between the otherwise complicated internal dynamics of
the hadron are absorbed in the change of the parton distribution, which legitimates the assumption
of the parton model of quasi-free particles. High energy alone is not a sufficient condition for the
application of the CGC. To be more precise, CGC describes the hadron in the saturation regime,
which will be outlined in the following.

Figure 1.1 – Sketch of fluctuations inside a nucleon. Top: slow nucleon. Bottom: boosted nucleon.
Due to the Lorentz time dilatation, virtual fluctuations become "on-shell". From [18].
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1.1. Heavy nuclei at high energy

The hadrons consist of three valence quarks, which interact by short lived fluctuating virtual quarks
and gluons. As long as the lifetime of the virtual particles is smaller than the characteristic timescale
of the probe, they only modify the parameters of the Lagrangian by renormalization. Long-lived
fluctuations are, on the other hand, seen as partons which are on-shell (in a definition of on-shellness
which is relaxed by the uncertainty principle), as it is displayed in Figure 1.1. As the collision time
scales as the inverse collision energy, the parton distribution grows with the collision energy, as more
and more virtual particles have a relatively long lifetime. During a measurement of a process with
transverse momentum Q, a fixed distance of order Q−1 is resolved. Particles which are seen as non-
virtual in this probe had then the spatial extension of their wave function inside this space. If one
increases the collision energy, the number of partons increases and they fill all the available space
in the hadron. The density of gluons becomes high enough for interactions between gluons to be
dominant, which is called gluon saturation. The gluon occupation number is limited by α−1

s , the
point at which splittings and recombinations balance. In deep inelastic scattering experiments, a
condition for gluon saturation via the transverse momentum was found as Q2 < Q2

S ∼ x−0.32 [19]
with the Bjorken-x, which is small at high energy. A more useful threshold for gluon saturation and
by this for the application of CGC is given by looking at the point from which gluon recombinations
becomes likely, which is when the product of the recombination cross section αSQ−2 and the surface
density of gluons A−2/3xG(x,Q2) (A is the mass number, G the gluon density) becomes larger than
one. This means that the partons, which emit gluons and form by this cascades, start to interact by
recombining gluons. This causes non-linearities in the gluon distribution. One sees also

Q2 ≤ Q2
S ≡

αsxG(x,Q2
S)

A2/3 . (1.1)

As long as a process has a smaller typical momentum scale than QS , it is dominated by satura-
tion. As the gluon distribution is proportional to the nucleon volume [20], one gets together with
the observation about the proportionality of the momentum fraction the relation Q2

S ∼ A1/3x−0.32.
Therefore, there is a window between this scale and ΛQCD (below which confinement dominates),
which grows with the size of the nuclei as well as with decreasing x, in other words rising energies.
QS ranges between 1.2 GeV for the RHIC and 2 GeV for the LHC [20].

For a system in which the observer is at rest and the hadron has a very high momentum, one uses
the convenient light cone coordinates

x+ ≡ x0 + x3
√

2
, x− = x0 − x3

√
2

. (1.2)

The direction of motion is x3. This definition may also be applied to the momentum. A boost in
z-direction results in a scaling with eω for x+. Partons having a high longitudinal momentum are
slowed down by relativistic effects and appear to be static in the transverse plane. As the evolution
of x+ is determined by p− and this is going to zero for massless case due to p− = p2

T /(2p+), the color
current being the only relevant information about fast partons becomes

Jµa ≡ δµ+ρa(x−,xT ) (1.3)

with the spatial distribution of color charge ρa. One expects a peak around x− = 0 due to Lorentz
contraction, but an undetermined distribution in the transverse plane. The color distribution is there-
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1.2. LO approximation

Figure 1.2 – Degrees of freedom in the CGC effective description of a high energy hadron. From [18].

fore unknown and can be seen as a random variable with probability distribution W [ρ]. Therefore,
the expectation value of an observable becomes the functional average

〈O〉 =
∫

[D ρ]W [ρ]O[ρ]. (1.4)

1.2 LO approximation

To calculate this, one has to determine the observable for an arbitrary configuration of the color
charge density and then perform the weighted average. However, it is not clear at this point if the
two densities of the two nuclei are dependent of each other. This is crucial for being able to use this
factorisation and will become clearer soon.

This description has of course its limitations. For any parton with too small rapidity in the observer
frame, the approximations will fail. Therefore a cutoff rapidity between the observer and the hadron
rapidity has to be introduced. Partons with a lower rapidity will be described as gauge fields, that
means according to the original Yang-Mills-action, such with higher rapidity will be approximated
as outlined above . This, together with the assumptions of a nearly Gaussian probability distribu-
tion, leads to what is called the McLerran-Venugopalan model, which is basically the Color Glass
Condensate at lowest order [21–23].

Figure 1.2 displays the approximation of degrees of freedom . The action has therefore two contri-
butions, the Yang-Mills and an eikonal contribution, and reads

SCGC =
∫
d4x

(
−1

4FµνF
µν + JµAµ

)
(1.5)

Next, one can take a look on the power counting in the saturation regime. This refers to a gluon
occupation number of g−2, as at this point recombinations and splittings of gluons balance each
other. As the occupation number is quadratic in the gauge fields, of which ρ is the density, it follows
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1.2. LO approximation

Figure 1.3 – Illustration of the Schwinger-Keldysh formalism. The final state is in the centre, the
right side is the complex-conjugate of the left side. From [18].

ρ ∼ g−1, and the same is true for the color current by construction. One has by this strong sources
in a dense regime and can use the results of [24] for the power counting of connected graphs in the
CGC (for disconnected diagrams, it can be applied to the subdiagrams). The calculation is equally
valid for quartic or other vertices. The order of each graph therefore reads

G ∼ g−2gnEg2nL (1.6)

with the number of external gluons nE and loops nL. As the observables depend now non-pertubatively
of the number of sources, they are at tree level given by an infinite sum of tree diagrams with arbit-
rary many insertions of the current.

In practise, one wants to work most of the time with inclusive observables, that means quantities
which are averaged over all final states. The following results are only valid for such observables,
as exclusive quantities show a difficult behaviour [18]. It is also assumed that the initial state only
contains the two nuclei, which can be absorbed in the source term. In order to calculate the inclusive
observables, it is favourable to use the Schwinger-Keldysh formalism ([25, 26]), also known as closed
time path formalism. This is similar to Cutkosky’s cutting rules [27] and includes all the necessary
steps to compute

〈O〉 =
∑

final states f
P (AA→ f)O[f ]. (1.7)

This is achieved by expanding the time integration to a path which covers the full timeline both
in the conventional ordered sense and the inversed one. The generating functional is connected
to the conventional of time-ordered perturbation theory, which can be proven using the fact that
interactions are always trivially factorizable:

Z[j+, j−] = exp
[∫

dx4dy4�x�yG
0
+−(x, y) δ2

δj+(x)δj−(y)

]
Z[j+]Z∗[j−] (1.8)

One has additionally the massless propagators

G0
+− = 2πθ(−p0)θ(p2), G0

++(p) = i

p2 + iε
, G0

−−(p) = −i
p2 + iε

. (1.9)

The first one is used for the on-shell particles on the line of the final state, whereas the other two
are used for the internal lines left and right in figure 1.3, in other words, for the normal and the
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1.3. Cutoff-dependence at higher orders

complex-conjugate amplitude. One says that G0
+− "stitches" ordinary perturbation theory and its

complex-conjugate counterpart. In this framework, one calculates the inclusive observable in the
following way:

— One draws all AA → AA diagrams at a given order in g2, with the power counting as seen
before.

— One sums over all possible assignments of + and - on the internal vertices, which are connected
by the respective propagators.

— One sets all unconnected graphs to zero, and integrates over the real axis.
The simplification arises as one can always use these relations to get a retarded propagator, which
replaces the sum over the + and - indices:

G++ +G−− = G+− +G−+ (1.10)

G++ −G+− = G−+ −G−− = GR (1.11)

This leads in leading order to an infinite sum of tree diagrams built with retarded propagators (due
to the sum over all + and - indices) and an arbitrary number of current insertions, as they do not
change the power counting. However, all of this graphs are structured recursively, therefore the sum
can be seen as Green’s formula for an initial surface at −∞. This can be expressed by the classical
solutions of the Yang-Mills equations with vanishing retarded boundary conditions

[Dµ, F
µν ]a = ρ1δ

ν+ + ρ2δ
ν−, lim

x0→−∞
Aµ(x) = 0. (1.12)

It is now sufficient to solve these equations, which enables to express the solution in Aµ.

1.3 Cutoff-dependence at higher orders

In a next step, one can take a look on the NLO, which is given by the sum of all 1-loop diagrams,
which are of order O(1) in the coupling constant. However, one has to be aware of the cutoff ycut

introduced earlier. When integrating over the loop, one has to respect it, as one otherwise enters the
domain of static sources and by this double-counts these terms. Therefore, the loop diagrams can be
dependent on the cutoff [28], and a n-loop diagram can have a dependency up to order n. The terms
with maximum order of dependence of the cutoff are called leading log terms, as the cutoff is usually
defined as being the logarithm of a cutoff on the longitudinal momentum. However, as the cutoff is
arbitrary, the observables should not depend on it. The aim is to absorb the leading log dependency
in a redefinition of the probability distribution in 1.4, which turns it into a cutoff-dependent object.
Note that although W [ρ] will be then cutoff dependent, it has always the same dependency and may
be used for all inclusive observables.
In order to achieve this, one can use a relationship between the LO and NLO observable. This can
be formally written as

〈O(φ)〉NLO =
∫
d3xδΦ(x)δO(Φ)

δΦ(x) + 1
2

∫
d3xd3yG(x, y) δ2O(Φ)

δΦ(x)δΦ(y) . (1.13)

It includes two corrections, a 1-loop correction to the classical field δΦ(x) and a propagator dressed
by the background field Φ. All of the fields are separated by space-like intervals, as one looks at the
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1.3. Cutoff-dependence at higher orders

final state, so one does not need to differ between the subscripts + and -. It was shown in [29] that
there exists the following relationship for all inclusive variables:

ONLO =
[1

2

∫
uv

Γ2(u,v)TuTv +
∫
u
α(u)Tu

]
OLO (1.14)

where OLO is seen as a functional of initial values on a hypersurface over which one integrates. Tu
shifts the initial field:

exp
[∫
u
α(u)Tu

]
F (Ainit) = F [Ainit +α] (1.15)

The expression of Γ2 is:

Γ2(u,v) =
∫

d3k

(2π)32ωk
ak(τ0,u)a∗k(τ0,v) (1.16)

with τ0 being the initial time and the ak being small perturbations around the classical field, having
color, spin and Lorentz indices being hidden here. Note that both Γ2 and α in 1.14 are universal
for all inclusive observables, but not valid for exclusive ones. As the operator in front of the LO
observable only acts on the initial values, the time evolution at NLO stays classical, just like at LO.
As the LO result depends only on the classical field, quantum effects in the evolution do only enter at
orders higher than NLO. However, quantum corrections can still enter from the initial state, which
is the effect of TuTv. It can be shown that this is a general property of quantum mechanics [18].
With this result, one can investigate the cutoff-dependence at NLO. [29] shows how to use this in
order to obtain the cutoff dependence. An important relation for this procedure is , when keeping
only terms linear in the cutoff [29]

ONLO =
LLog

y+
cutH1OLO(A+) + y−cutH2OLO(A−) (1.17)

where one uses the JIMWLK Hamiltonian [30–33] for each of the nuclei

H = 1
2

∫
~xT ,~yT

δ

δρa(~xT )χab(
~xT , ~yT ) δ

δρa(~yT ) (1.18)

with

χab(~xT , ~yT ) = αS
4π3

∫
d2~zT

(~xT − ~zT ) · (~yT − ~zT )
(~xT − ~zT )2(~yT − ~zT )2

×
[(

1− Ũ †(~xT )Ũ(~zT )
) (

1− Ũ †(~zT )Ũ(~yT )
)]
ab

(1.19)

where Ũ is a Wilson line in adjoint representation constructed form the gauge field A+ such that
∇2
TA

+ = −ρ. "LLog" stands for leading log terms. These are terms in maximal degree of the cutoff.
1.17 is an expression for these terms which we intend to absorb in the probability distribution. The
+/− superscript at the cutoff stands for the right or left moving nucleus. One realises that 1.17 is a
sum without a mixing term, so that the cutoff dependent term is an intrinsic property of the moving
nucleus itself. With these definitions, one can also write

1
2

∫
uv

Γ2(u,v)TuTv +
∫
u
α(u)Tu = y+

cutH1 + y−cutH2 (1.20)

with one term for each nucleus. This allows us to redefine the source distributions of each nucleus
and by this eliminate cutoff dependence.
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1.4. Thermalization in the CGC framework

This result follows also from a heuristic argument: Remembering that the cutoff was introduced in
order to deal with the low-energy gluons being produced when boosting the nucleus up to gluon sat-
uration, one sees that they have a very long formation time due to the uncertainty principle, longer
than the time frame of collision. Therefore they had to exist before. As the nuclei have space-like
separation until the point of collision, causality forces the cutoff-dependent terms to be unmixed.

One can now eliminate the cutoff-dependence by integrating over all possible color charge densities
in the projectiles, as these are anyway unknown. Using the fact that the JIMWLK Hamiltonian is a
self-adjoint operator, one can use ∫

[Dρ]W (HO) =
∫

[Dρ](HW )O (1.21)

which allows in the end to transfer in 1.4 for NLO the cutoff-dependence together with the action
of the Hamiltonian into the probability distribution W [ρ], using 1.14 and the approximation 1.17,
such that W [ρ] → W [ρ] − ycutHW [ρ]. This would cancel the linear dependence on ycut. This is
connected to the equivalent approach for an infinitesimal variation δycut, which amounts to the
JIMWLK equation

∂W [ρ]
∂ycut

= −HW [ρ] (1.22)

which tells how the probability distribution varies with the cutoff. The same procedure is valid
for any inclusive variable. By this, it is achieved that the leading log cutoff-dependency has been
cancelled.

1.4 Thermalization in the CGC framework

With this tools, CGC can describe the earliest stages of a heavy ion collision. However, eventually,
the hadronization will happen when the energy density falls below the critical QCD energy density.
This has not been included in CGC. Nevertheless, there has to be an intersection between the re-
gime of CGC and the hydrodynamic regime of hadronization. CGC should be able to produce an
initial state from which on hydrodynamics can evolve the system further. It has been outlined in
[18] that even if there is some success in matching at LO of CGC, this is not possible due to a non-
fitting behaviour of the energy-momentum-tensor: The ration between longitudinal and transverse
pressure remains much too slow to be in agreement with hydrodynamics. The same is true when re-
summing the leading log corrections, which is absorbed in the evolution of the distributionsW [ρ] [18].

A possible solution to this is an instability of the boost invariant solutions of the classical Yang-Mills
equations ([13, 34, 35]). A small pertubation of the initial conditions, when being dependent of the
rapidity, leads to a divergence of the perturbed relatively to the unperturbed. This is related to the
Weibel instabilities of QED for anisotropic plasmas [36–38]. These instabilities are a great problem
for the power counting which has been developed before, as this was only done by comparing orders
of g2. Now, time dependent factors can grow exponentially and cause higher order contributions to
become greater than leading orders. This sets a limiting time scale at which the quantum fluctu-
ations become as large as the initial background classic fields. Although this forces one to improve
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1.4. Thermalization in the CGC framework

the power counting, the effect of this instabilities is to map a compact support into a greater area
of the phase-space than only at NLO, which greatly supports the thermalization process, as they
lead to a very fast isotropization [39]. The plasma instabilities generically arise as a consequence of
anisotropy and lead to exponential growth of modes that help restore the isotropy. Comparable to
particle scatterings tend to randomize and thus isotropize the momentum distribution in a gas, the
classical fields have interactions built in and it is not surprising that the fluctuations on top of the
fields lead to a higher isotropy.

The perturbations in 1.16 grow due to the instabilities for certain values of k exponentially in time.
By this, it compensates the factor of g2 of the loop contribution (via T ) and can reach the same
size as LO terms. Such a problem can occur at any loop order. Therefore, an alternative strategy
has to be applied, in such a way that one only keeps the most important terms with respect to the
instabilities, too. This is achieved by scaling the perturbation of the classical field in the expansion
with a factor of order exp(√µτ), that means, adding this factor to T . Here, µ is the order of QS and
τ the time. The expansion of an observable becomes

O = c0g
−2 + c1g

0e2√µτ + . . . . (1.23)

At higher orders, not all terms have the same growth in time as for the 2-loops, for example, one can
connect four or only three perturbed initial values by loops, which give the respective time-dependent
factors. This affects the order of the time growth as well as how often this contribution is counted
(which corresponds to symmetry factors). It can be shown that the right resummation is

Oresummed = exp
[1

2

∫
uv

Γ2(u,v)TuTv
]
OLO. (1.24)

Note that only terms with second derivatives have been counted, as terms with only one derivative
(e.g. having T only acting once) have a much slower growth with time. By this, one regains the
results of LO and NLO as before, as well as a subset of higher loop contributions. Using the well
known identity

e
α
2 ∂

2
xf(x) =

∫ +∞

−∞
dz
e−z

2/2α
√

2πα
f(x+ z) (1.25)

which can be generalised into operators, one can rewrite 1.24 into a more explicit form

Oresummed =
∫

[Da] exp
[
−1

2

∫
uv
a(u)Γ−1

2 (u,v)a(v)
]
OLO[Ainit + a] (1.26)

This results basically in averaging the classical trajectories over a set of initial conditions, done by
the integral over a. This approach is called Classical Statistical Approximation (CSA) ([16, 40, 41]).
It can be used to calculate observables. The right initial conditions in order to restore LO and NLO
are:

〈Aµ〉 = AµLO, Γ2(u,v) =
∫

d2k

(2π)32ωk
ak(τ0,u)a∗k(τ0,v), lim

x0→−∞
ak(x) = eik·x (1.27)

which reflects the vacuum early times as well the narrow Gaussian distribution around the lowest
order fields. The mode functions have to obey a linearized Yang-Mills-equation, and need to be solved
for this until the time when the simulation would start, for which solutions exist [42]. This approach
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1.4. Thermalization in the CGC framework

could be used to study the process of thermalization from CGC initial conditions. However, an
alternative related strategy in kinetic theory is in general of lower computational cost and based on
similar assumptions as the CSA. A short look on the underling Schwinger-Keldysh formalism at finite
temperature will be taken, which is a more intuitive way of calculating the interesting observables
and will shed more light on the process of thermalization.
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Chapter 2
The Boltzmann equation

2.1 Kadanoff-Baym equations and Wigner transform

We have seen that for gluon saturation, one can describe a heavy ion collision with classical field
theory and the right initial conditions. After the very early stages, the occupation number will de-
crease until being of order 1. This is due to the fact that after the very first stage, expansion happens
and energy is transferred to the soft gluons, leading to thermalization in the end. From occupation
numbers smaller than 1

αs
on, the Boltzmann equation should be a correct description of the system

[5, 15]. Therefore, there exists a range of the occupation number in which the description by the
Boltzmann equation and by classical fields with the CGC framework are both valid, allowing a dual
description. The kinetic approach can help develop intuitive pictures for understanding results from
classical field simulations. An example is the occurrence of a Bose-Einstein-Condensate starting with
overpopulated initial conditions, which was predicted first from the kinetic evolution [43], and was
less obvious classical field description. It is extremely useful to have such dual descriptions as an
important tool to develop deeper understanding and have mutual confirmation for interesting results
from each other. Therefore, the aim is now to show how the Boltzmann equation arises from quantum
field theory. This will be done in the simple framework of a scalar field theory with a φ4 interaction
term. It can be easily generalised to high energy QCD [44].

A possible starting point are the well known Dyson-Schwinger-equations in the Schwinger-Keldysh
formalism

G(x, y) =G0(x, y) +
∫
C
d4ud4vG0(x, u)(−Σ(u, v))G(v, y)

G(x, y) =G0(x, y) +
∫
C
d4ud4vG(x, u)(−Σ(u, v))G0(v, y)

(2.1)

These equations express how to resum the self energy in the propagators, with the free propagator
G0 and the resummed one, G. Both formulations are equivalent. One can now apply (� + m2) for
both coordinates in order to obtain the following equations

(�x +m2)G(x, y) = −iδC(x− y) +
∫
C
d4vΣ(x, v)G(v, y)

(�y +m2)G(x, y) = −iδC(x− y) +
∫
C
d4vG(x, v)Σ(v, y)

(2.2)
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2.2. Approximations towards kinetic theory

with δC being the straightforward generalisation of the delta function to the time contour. These are
the Kadanoff-Baym equations.

In order to reach the Boltzmann equation, one has do an approximate description, as kinetic theory
is expressed by a particle distribution f(x,p) which clearly violates the uncertainty principle. During
the process, one will switch the description from quantum to classical many-body functions, which
often involves the use of the Wigner-transform (for example [45]). This is related to the fact that for
an off-equilibrium situation as this which is varying slowly in space and time, there is no invariance
under translations. Instead, one uses a Fourier transform over the separation variable. This, together
with the then existing dependency of the mid-point variable, will in the end allow to make use of
the separation of degrees of freedom between hard and soft modes. The Wigner transform for an
arbitrary 2-point function F is defined via

F (X, p) =
∫
d4seip·sF

(
X + s

2 , X −
s

2

)
(2.3)

with the separation s = x− y and the mid-point X = (x+ y)/2, as well as the time integration over
the real time axis and not the contour. The Kadanoff-Baym equations contain the convolution of the
self-energy and the dressed propagator. It is therefore important to know how the Wigner transform
behaves with respect to convolutions, which can be proven for a convolution of F and G to result in

H(X, p) = F (X, p) exp
{
i

2
[
~∂X ~∂p − ~∂X ~∂p

]}
)G(X, p). (2.4)

The superscript arrows indicate the direction of action of the operator.
With the definition of the new variables, one easily sees that the derivatives in the Kadanoff-Baym
equations can be rephrased in X and s. Due to this, the Wigner transform will in this case just be
equal to a transformation ∂s → −ip.
We get then

(1
4�X − i∂Xp− p2 +m2)G(X, p) = −i+ Σ(X, p) exp

{
i

2
[
~∂X ~∂p − ~∂X ~∂p

]}
)G(X, p)

(1
4�X + i∂Xp− p2 +m2)G(X, p) = −i+G(X, p) exp

{
i

2
[
~∂X ~∂p − ~∂X ~∂p

]}
)Σ(X, p)

(2.5)

The Boltzmann equation is now a result of two approximations.

2.2 Approximations towards kinetic theory

Gradient approximation

The gradient approximation is based on the assumption that the derivatives with respect to X

should be negligible with respect to the ones in s. The reason is that X is the scale of change of the
properties of the system, e.g. the particle distribution, and by this much greater than the De Broglie
wavelength of the particles, which is related to p. One can therefore say p ∼ ∂s � ∂X . Due to this,
the exponential in 2.5 can be neglected beyond the first term of its expansion. Taking the difference
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2.3. Calculation of the collision term

of both equations and breaking the propagator and the self energy down into the ++, +−, −− and
−+ components gives after some calculations ([46, 47])

−2ip · ∂X(G+−(X, p)−G−+(X, p)) = 0,

−2ip · ∂X(G+−(X, p) +G−+(X, p)) = 2[G−+Σ+− −G+−Σ−+].
(2.6)

Quasi-particle approximation

Closely related to the Schwinger-Keldysh-formalism in thermal equilibrium, a local particle distri-
bution f(X,p) modifies the dressed propagators. This approximation is valid only for infinitely
long-lived particles, but is still justified if the life-time of particles, that means, the time between two
collisions is considerably larger then its wavelength. If one defines ρ(X, p) = G−+(X, p)−G+−(X, p),
the propagators become

G−+(X, p) = (1 + f(X,p))ρ(X, p),

G+−(X, p) = f(X,p)ρ(X, p).
(2.7)

The particle distribution was chosen in order to fall back to the equilibrium propagators (which can
be seen by taking the difference). In contrast to usual finite temperature field theory, the particle
distribution is not a thermal phase space distribution but space-time dependent.

These two approximations are crucial in order to apply kinetic theory. A similar approach to achieve
this approximation can also be found in [15]. 2.6 and 2.7 can be combined, which gives together with
the expression of the spacetime derivative and of the four-vector of p

[∂t + vp · ∇x]f(X,p) = i

ωp
[(1 + f(X,p))Σ+− − f(X,p)Σ−+] . (2.8)

vp = p/2ωp is the velocity vector for particles of momentum p. The right hand side is called the
collision term and denoted Cp[f ;X]. It is, just as the whole equation, spatially local as it contains
only objects evaluated at X. However, the collision term is non-local in momentum. The left hand
side derivative is called the transport derivative, and constant for particles being only dependent on
x − vpt which is of course the case for non-interacting particles. From now on, it is assumed that
the distribution function is spatially homogeneous, which results in dropping the spatial derivative.
As a result, the notation of the space-time dependency is omitted, even if the distribution is still
time-dependent.

2.3 Calculation of the collision term

The description is for now restricted to a φ4 point-like elastic interaction term of lowest order. In
order to determine the Boltzmann equation explicitly, the self energies have to be computed, which
is dependent of the underlying theory. They are usually truncated after the lowest non-zero order. In
φ4 theory, this is done at two-loops. The collision term is already known from the elastic scattering
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2.3. Calculation of the collision term

cross section for a 2→ 2 process ([15, 17, 48]), as the amplitude becomes trivial here. It reads

Cp[f ] = g4

4ωp

∫
p′kk′

(2π)4δ(P +K − P ′ −K ′)[f(p′)f(k′)(1 + f(p)(1 + f(k))

−f(p)f(k)(1 + f(p′))(1 + f(k′))]
(2.9)

with the conventional notation ∫
k

=
∫

d3k

(2π)32ωk
(2.10)

of the invariant phase space integral for on-shell-particles. p and k are initial, p′ and k′ are final
particles. It describes the rate of change of the particle distribution, with production terms for p
weighted by 1 + f(p) , and destruction terms for particles of this momentum weighted by f(p). In
fact, this term can be also expressed in the retarded-advanced formalism, resulting in the possibility
to do the same classical approximations as for the CSA in perturbation theory (which is derived
from the reformulation in path integral formulation of quantum field theory), as demonstrated in
[18]. This shows the equivalence of both approaches.

This is done with help of a simple transformation matrix [17, 49]

Ωαε =
(

1 −1
1/2 1/2

)
(2.11)

giving the new propagators (the retarded, advanced and symmetric ones)

G0
αβ =

(
0 G0

A = G0
++ −G0

−+

G0
R = G0

++ −G0
+− G0

S = 1
2(G0

++ +G0
−−)

)
(2.12)

The sources will be attached to propagator endpoints labelled 1, which are the lowest time endpoints
of a retarded or advanced propagator. With this, one can calculate the new propagators from the
Schwinger-Keldysh propagators and get

G0
R(p) = G0

21(p) = i

(p0 + iε)2 − p2 −m2 ,

G0
A(p) = G0

12(p) = i

(p0 − iε)2 − p2 −m2 ,

G0
S(p) = G0

22(p) = 2π(1
2 + f(p))δ(p2 −m2).

(2.13)

It follows easily that one has to transform the self-energies in a similar way. One therefore gets

Σ+− = −Σ11 + 1
2Σ12 −

1
2Σ21

Σ−+ = −Σ11 −
1
2Σ12 + 1

2Σ21

(2.14)

The collision term in this formulation reads

Cp[f ] = i

2ωp

[
Σ11(P ) + (f(p) + 1

2)(Σ21(P )− Σ12(P ))
]

(2.15)

The self-energies are by definition imaginary, so that the collision term is real as required. For the
vertices, one can use the rule

Γαβγδ = −ig2[Ω−1
+αΩ−1

+βΩ−1
+γΩ−1

+δ − Ω−1
−αΩ−1

−βΩ−1
−γΩ−1

−δ ] (2.16)
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2.4. Introducing Bose-Einstein condensate

which results in

Γ1111 = Γ1122 = Γ2222 = 0, Γ1222 = −ig2, Γ1112 = −ig2/4. (2.17)

This approach is identical for the CSA in pertubation theory. There, the CSA amounts to setting the
vertex Γ1112 and of course also its permutations to zero [18], which is a result of the great strength
of a source. Indeed, such a vertex would only have one source attached and would be less likely to
occur. The identical approximation can be done also in the context of kinetic theory, so that an
approximated collision term is derived, giving further insights about the influence of the ultraviolet
cutoff [17]. However, in this work the focus lies on working with the full, unapproximated collision
term 2.9.

2.4 Introducing Bose-Einstein condensate

2 → 2 processes allow initial conditions which cause an excess of particles, as they can not be ac-
commodated in the final Bose-Einstein distribution. For a dense gluonic system in perturbative
QCD, this has already been observed [50]. The reason is the large occupation number of order g−2,
giving values for the particle density of n ∼ Q3

S
g2 and for the energy density ε ∼ Q4

S
g2 and by this

nε−3/4 ∼ g−1/2 � 1. The system is overoccupied if nε−3/4 is of order greater than one.

Any extra particles can form a Bose-Einstein condensate (BEC) at fixed p = 0. If this is realised
depends on the underlying theory and the strength of overoccupation. For the φ4 model, number
changing effects are small and therefore a condensate will arise. However, it will be transient, as the
true equilibrium has no condensate, as it is expanding. In QCD, the inelastic processes are much
stronger and will change the nature of the condensate. However, it was shown that these processes
result in a speed-up of the condensation [51], but it will arise nevertheless. As for the here observed
model only elastic interactions are considered, the conservation laws force the system to keep the
number of particles constant. This can be accommodated in our formalism by modifying the particle
distribution function as

f(p)→ f(p) + nC(2π)3δ(p) (2.18)

It is implicitly assumed that for a small sphere of radius ε around zero, the integral over this sphere of
the particle distribution f(p) goes to zero for ε→ 0. Applying this modification inside the Boltzmann
equation and using it to simplify the integrals leads to coupled equations. Terms of higher than linear
order in the condensate density cancel, as this includes two Dirac deltas, which simplifies the integrals
down to the point that they either vanish due to kinematics or due to the fact that loss and gain
terms cancel. The form of the arising coupled differential equations can be taken from [52] and reads
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2.4. Introducing Bose-Einstein condensate

in this notation as:

∂tf(p) = g4

4ωp

∫
p′kk′

(2π)4δ(P +K − P ′ −K ′)

× [f(p′)f(k′)(1 + f(p))(1 + f(k))

− f(p)f(k)(1 + f(p′))(1 + f(k′))]

+ g4nC
8mωp

∫
p′k′

(2π)4δ(ωp +m− ωp′ − ωk′)δ(p− p′ − k′)

× [f(p′)f(k′)(1 + f(p))

− f(p)(1 + f(p′))(1 + f(k′))]

+ g4nC
4mωp

∫
kk′

(2π)4δ(ωp + ωk −m− ωk′)δ(p+ k − k′)

× [f(k′)(1 + f(p))(1 + f(k))

− f(p)f(k)(1 + f(k′))]

(2.19)

as well as

∂tnC = g4nC
4m

∫
p′kk′

(2π)4δ(m+ ωk − ωp′ − ωk′)δ(k − p′ − k′)

× [f(p′)f(k′)(1 + f(k))

− f(k)(1 + f(p′))(1 + f(k′))].

(2.20)

One may note that the condensate density will show an exponential behaviour. However, when this
will induce also a time-dependent change of the functional of the distribution functions, a very fast
change of the condensate density will be observed. Using the symmetry and antisymmetry of these
equations, one can determine the following conservation laws:

nC +
∫

d3p

(2π)3 f(p) = const

mnC +
∫

d3p

(2π)3ωpf(p) = const∫
d3p

(2π)3pf(p) = const

(2.21)

It becomes obvious that the condensation process strongly changes the development of the equilib-
rium, due to its influence on the two terms of 2.19. Without the condensate (e.g. in underoccupied
systems), the final thermalization process is not triggered by the evolvement of the condensate but
starts immediately, causing a higher influence of the initial conditions. Also, the high occupation
significantly decreases the mean free path and amplifies the scattering, to an order of 1

g4 g
2g2 ∼ 1.

This is a result of the Bose enhancement term (1 + f(p)) which scales like 1 in the dilute and like
f(p) in the dense regime. Even if the coupling is small, it behaves like strongly interacting matter.

Starting from initial conditions, one can now solve 2.19 and 2.20 numerically. Due to the H-theorem
[17, 53], the fixed point at infinite time for given initial conditions for the Boltzmann equation is
known as being Bose-Einstein distributions with chemical potential in our case of particle number
conservation, and are always reached. As the Boltzmann approach is strongly connected with the
CSA, as has been demonstrated, this will give insight about the thermalization process at the early
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2.4. Introducing Bose-Einstein condensate

stages of heavy ion collisions. On the other hand, it can be solved with a simple Euler method, a
great advantage in comparison to conventional CSA. The conservation laws in 2.21 play also a central
role here - they can be used to determine the quality of the numerical solution. This will be explained
in more detail in the next chapter.
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Chapter 3
Numerical setup

The Boltzmann equation has multiple advantages compared to the CSA. The higher flexibility in
the choice of the classical approximations as done in [17] and the "exact" result as the reference
on the one hand, but also the reduced numerical cost and the more intuitive interpretation on the
other hand. In the CSA, the same calculation has to be repeated several times with smaller and
smaller lattice spacing [16], which is not needed here. Instead, one can construct now an efficient
deterministic Boltzmann solver. However, several steps need to be done in order to reach a fast and
accurate simulation. These will be presented here, based on the algorithm used in [17].

3.1 Choice of constants

The first assumption made is that the distributions are isotropic, which allows to drop the p depend-
ency in the distribution function in favour of a dependency of the modulus, which is a considerable
simplification. The initial distribution which will be most commonly used in the following is such
that the distribution is high below a characteristic momentum scale Q and vanishing above, as it
is approximately the case for the initial Glasma. For the Glasma in heavy ion collisions, the phase
space is maximally filled: f0 ∼ 1/αS . The simplest form of this is a scaled, shifted and mirrored
Heaviside-distribution. It will be referred to as the CGC-like initial distribution. In order to avoid
Q becoming an additional parameter of the problem, all dimensionful quantities will be expressed
in units of Q. In the present case, Q is set to 1. It shall be noted that Q is the saturation scale
discussed earlier.

It is possible to make the same choice for the coupling constant g. Indeed, as it is only present as
fourth power in front of the collision term, it only controls the speed of the reactions. From 2.20 it
is obvious that a condensate can only exist if there were particles in it already at the initial state.
The existence of a condensate is necessary as for overoccupied initial conditions, instabilities would
occur at the time when transition into the condensate would otherwise happen. To prevent this, a
negligible initial value of nC is used as initial condition, at a value of 10−5. The exact value has no
visible effect on the simulation (see [17]).
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3.2. Discretization and timestep

Both 2.19 and 2.20 are mass dependent. The behaviour of this equations for masses going to zero
requires more investigation. The mass is therefore chosen to be small but non-zero, with the constant
value m = 0.1Q. This is indeed a possibility for further improvements. As the simulation is intended
to investigate gluons, one could also include their dynamical mass instead fixing the mass. Indeed,
gluons show the behaviour of having an effective mass arising from their interactions, making it
momentum dependent ([54, 55]).

The self energies of gluons do not vanish on the mass shell in vacuum due to the interactions of
gluons with the surrounding bath, which changes the dispersion relation. This results in massive
bosons even if they are massless without interactions (i.e. g = 0). There are two different poles of
the gluon-propagators, a longitudinal and a transverse one, with the longitudinal one being purely
collective which decouples for momenta much higher than the temperature [47]. One could include
this behaviour by calculating the running mass at each point in the simulation, using one of the
possible approximations of the dispersion relation of the mass investigated [56]. However, having a
non-fixed mass will result in a violation of the energy conservation. Instead, one could use a fixed
mass which is not set by hand but instead calculated with the use of the final distribution which is
known from the initial parameters. Such a possible improvement is out of the scope of this report.
With this choice of parameters, one can start defining the grid and the integration strategy.

3.2 Discretization and timestep

The time integration itself will be done with the Euler method, as it has low computational cost
and is in most cases of sufficiently high accuracy. However, it can become unstable in the vicinity of
the transition towards the condensate. There is a lot of freedom in the choice of how to modify the
timestep. One possibility is the following:
Starting with a timestep of 1, it is

— reduced if the relative or absolute change in the number of particles in the condensates lies
over a threshold

— reduced if at one of the gridpoints the particle distribution becomes negative, and the calcu-
lation for this step is repeated

— gradually increased up to a maximum of 1 if none of these occurs.
With this adaptive timestep, a stable simulation can be ensured. A parallel monitoring of conserved
quantities ensures that the conservation laws are respected with machine accuracy. This is simplified
by not including one feature of heavy ion collisions: the rapid expansion of the system in longitudinal
direction. This changes the conservation laws dynamically and will be not included in this set-up.
Instead, the thermalization is supposed to happen "in a box".

However, the right choice of the momentum discretization is crucial. The integrals over the mo-
mentum space have to be transformed into discrete sums. The problem lies in the energy conser-
vation. Of the four momenta p, p′, k, k′, one is calculated when given the other three by energy
conservation. However, this is not guaranteed to lie on a grid point, which would force one to inter-

21



3.3. Numerical evaluation of the collision term

polate, resulting in additional computational cost and errors. Instead, one may set up a linear grid
in the energy, starting at m up until a UV-cutoff ωΛ by ωi = m + i∆ with ∆ ≡ ωΛ−m

N where N is
the number of grid points. This then translates into a UV-cutoff for the momentum too. It will be
in the following chosen to be ΛUV

Q = 4. The quadrature formula becomes by this∫ Λ

m
dωf(ω)→ ∆

N∑
i=1

wif(ωi) (3.1)

The zero gridpoint is excluded due to possible singularities. In fact, its contribution can be calculated
separately using 2.19 and 2.20. wi is the respective weight. The trapezoidal rule will be used, for
which the weights are 1/2 at the first and last grid point, and 1 for all others.

In order to respect the conservation laws, the discretization has also to preserve the antisymmetry
between initial and final states, as well as the symmetry between same state particles. It will shortly
shown that there will be only two-dimensional integrals. In such, this is achieved by adding a third
integral with a delta function of energy conservation∫

dωp′dωk′ · · · =
∫
dωp′dωk′dωkδ(ωp + ωk − ωp′ − ωk′) . . . (3.2)

so that, in the present nomenclature, these laws hold. Due to discretization, when i is the fix index
of ωp, this leads to the following weights

∆2
N∑

j,k,l=1
wjwkwlδi+j−k−l · · · = ∆2

N∑
k,l=1

wjwkwk+l−i . . . (3.3)

3.3 Numerical evaluation of the collision term

For spatially homogeneous systems, the condensation transition should be a genuine discontinuity.
However, this is not exact after discretization, as there is always a momentum greater than zero
which is the smallest and defines the maximal size of the system. However, the reproduction of the
discontinuity improves with the resolution of the grid. This means that one would like to have a high
value for N , the number of energy grid points. This is however limited by the computation time.
Indeed, integrals are very costly. Looking at 2.9, one sees an integral over three 3-dimensional phase-
spaces and 4 constrains on energy and momentum, giving a 5-dimensional integral. This integral is
unaffected by the introduction of the condensate and still present in 2.19. As this would have to be
evaluated for each p at every timestep, the computational cost would scale as N6 times the number
of steps. Under this conditions, no satisfying resolution could be achieved. Gladly, it is possible to
reduce the integral to two dimensions, just as the other integrals in 2.19. In a first step, the strategy
of [17] is reviewed. In a second step, a generalisation is presented which allows an application on a
greater number of cases.

3.3.1 Direction independent scattering

When the assumption is made that the distribution is isotropic in space and the direction of the
particles in the scattering process does not influence the coupling like for the φ4 interaction, the
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3.3.1. Direction independent scattering

angular integrations can be completely separated. The approach has been demonstrated in Appendix
A of [57] and Appendix B of [17] but will be outlined here as a reminder. For a momentum p,
the angular measure reads dΩp = sin θpdθpdφp and one knows that

∫
dΩp = 4π with φp being

the azimuthal and θp the polar angle. As the angular dependency can be separated due to our
assumption, it holds that

Cp[f ] = 1
4π

∫
dΩpCp[f ] (3.4)

Now, one may also use the well known identity

δ(p+ k − p′ − k′) = 1
(2π)3

∫
d3xei(p+k−p′−k′)·x (3.5)

Applying it to the collision term in which the angular integrations had been separated out, as well
as expanding the used notation for the momentum integral lets a term appear of the form

p′kk′

64π5ωpωkωp′ωk′

∫
x2dx

∫
eip·xdΩx

∫
eip

′·xdΩp′

∫
eik·xdΩk

∫
eik·xdΩk′ (3.6)

This well-known integral can be solved, as the distribution functions are independent of the angles,
giving

4
πpωpωkωp′ωk′

∫ ∞
0

dx

x2 sin(px) sin(kx) sin(p′x) sin(k′x) (3.7)

which results into [57]
1

pωpωkωp′ωk′
Min(pkp′k′). (3.8)

Using now the identity pdp = ωdω to achieve an integration over the energies and eliminating the
remaining linear dependencies of the three not-fixed momenta and their energies in the denominator
as well as using the delta function of the energy conservation to eliminate another integral leaves one
with the two dimensional integration for the collision term of

Cp[f ] = g4

128π3pωp

∫
dωp′dωk′ Min(pkp′k′)F [f ] (3.9)

where F [f ] is the dependency on the particle distribution for the chosen approximation. In practice,
the integration domain is divided in four areas depending on the value of the minimum. This
very elegant reduction of the dimensions of the integral can be calculated very fast and reaches high
numerical resolutions. However, it comes with a high cost: as the angles are omitted, it is not possible
to have the amplitude of the scatterings dependent on the value of the Mandelstam variables, which
are angular dependent. Therefore, it is not possible to investigate theories with momentum dependent
amplitudes with an algorithm based on this assumption. Indeed, all which was presented so far would
have been equally possible for elastic 2→ 2 processes in other theories. Only an amplitude squared
dependent of the Mandelstam variables, G(s, t, u) = G(P,K, P ′,K ′) would have to be included in the
terms. For this, the kinetic variables have to be restored, which is not possible with this reduction.
In the following section, another, not yet considered reduction shall be presented, which fixes this
constraint.
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3.3.2. Generalisation

3.3.2 Generalisation

The crucial step in the last approach was separating the angular integrals in order to make use
of the reformulation of the delta function and producing the separate sinus factors. Instead, one
may perform a change of the integration variables by introducing a new momentum p̃ = p+ k. The
additional integral over this variable is compensed by another delta function, leading to a reformulated
integral of the form

g4

4ωp

∫
p′kk′

∫
d3p̃(2π)4δ(ωp + ωk − ωp′ − ωk′)δ(p̃− p− k)δ(p̃− p′ − k′)G(P,K, P ′,K ′)F [f ]. (3.10)

After expanding the notation of the integral as well as introducing an angular measure integration
over dΩp

4π (which is possible due to isotropy), applying again the relation pdp = ωdω, multiplying by
1 = p

p and eliminating one integral with the energy delta function, one gets

g4

32ωpp(2π)5

∫
[dp̃dωp′dωk′ ][dΩpdΩkdΩp′dΩk′ ]

(p̃pk)(p̃p′k′)δ(p̃− p− k)δ(p̃− p′ − k′)G(P,K, P ′,K ′)F [f ]
(3.11)

with the scaling of the coupling G(P,K, P ′,K ′) which will be the squared amplitude later on. At
this point, one can show the equality to the old approach when setting G ≡ 1. In this case, it should
be possible to restore the old result, as the delta functions are again independent of the polar and
azimuthal angles of p and by this the whole integrand. One can take a look at this part of 3.11:∫

dΩp̃dΩk
dΩp
4π (p̃pk)δ(p̃− p− k)

=
∫ ∞

0

dx

x
8(sin(x · p̃) sin(x · p) sin(x · k))

=
∫ ∞

0

dx

x
2(− sin(x · (p̃− p− k)) + sin(x · (p̃+ p− k))

+ sin(x · (p̃− p+ k))− sin(x · (p̃+ p+ k))

= π (sgn(x · (p̃+ p− k))− sgn(x · (p̃− p− k))

+ sgn(x · (p̃− p+ k))− sgn(x · (p̃+ p+ k)) (3.12)

In the second line, the reformulation of the delta function was used and all the angular integrations
could be executed, as the integral is now independent of the angles. The resulting integral is known
and gives for our choice of variables, 2π. The same can be done for the second p̃ factor with the
second delta function, by introducing the angular measure integration over p a second time, balanced
again by a factor of (4π)−1.

One is left with the following reformulation of 3.11 for G ≡ 1

g4

32ωpp(2π)3

∫
dp̃dωp′dωk′F [f ] (3.13)

The length of the integration interval over p̃ has therefore to be equal to 2 Min(pkp′k′) in order to
restore the previous result of the old reduction in 3.9. This has to be the range of p̃, as the integration
over p̃ is done over a trivial integrand. It is known that by construction, this interval ranges from
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3.3.2. Generalisation

Figure 3.1 – Sketch of the range of the momentum moduli

Max(|p− k|, |p′ − k′|) to Min(p + k, p′ + k′). Indeed, both formulations, p̃ = p+ k and p̃ = p′ + k′

result in two restrictions each on the range of p̃. If both times the first or both times the second
term in the maximum/minimum is chosen, this gives, depending on the sign inside the modulus, two
times one of the four momenta as the length of the integration interval. This one being the minimum
momentum of the four is a result of energy conservation. An example of such a case is shown in
Figure 3.1. In this case, one of the pairs of momenta lies in between the other pair, which results in
the described condition that the maximum/minimum always chooses the same pair. Then, as shown
in the figure, is the interval length two times the minimum momentum. However, it is not clear that
the case of figure 3.1 is always valid, in other words, that the range of the final momenta is always
contained in the range of the initial momenta, or reversed. This shall be shown here.

Let p the minimum (all other cases follow by renaming the momenta). Then, due to relation between
energy and momentum, ωp is the smallest of the four energies. As all energies are strictly positive,
ωk has to be the greatest energy, resulting in k being the greatest momentum and by this, |p− k| is
greater than |p′ − k′|. The square of the energy conservation equation is of the form

(p+ k)2 − 2pk + 2ωpωk = (p′ + k′)2 − 2p′k′ + 2ωp′ωk′ (3.14)

The result follows if ωpωk − pk is greater for |p − k| being greater. For this, one can take a general
view on the equivalent function f(x, y) =

√
x2 +m2

√
y2 +m2 − xy. The partial derivative with

respect to x is ∂xf(x, y) = x

√
y2+m2
√
x2+m2 − y which becomes zero only for x ≡ y. An evaluation of the

signs left and right of the zero point shows that this is an minimum. The same analysis can be
done in y-direction. This observation can be also made clearer with help of figure 3.2. One can see
that the value of f(x, y)=̂ωpωk − pk is increasing with increasing difference between x and y, which
was needed for the proof. The minimum is found at points where x ≡ y is true, e.g. for two equal
momenta. By this, this term is greater for momentum pairs with a higher difference, which was the
desired statement.
In summary from p being the minimum, it follows that |p− k| is greater than |p′ − k′|, and also that
p+ k is smaller than p′ + k′. Due to this, the interval will evaluate to have a length of 2p.

For the more interesting case of G being not constant, most of the integrals are trivial. As p (fixed as
this is the momentum for which the derivative is performed) and k (due to the delta functions) are
known, in the integral over p̃ the angles in the triangle between these three momenta are fixed. On top
of that, p̃ = p′ + k′ is equally true. When the integration is performed over the energy/momentum
grid, these two momenta are also fixed, resulting in fixing the angle between them. The only angle
which is then not fixed is the azimuth between the p̃pk and the p̃p′k′ plane, over which there has
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3.4. Calculation of Mandelstam variables

Figure 3.2 – f(x, y) =
√
x2 +m2

√
y2 +m2 − xy in a typical momentum range. The curve on which

∂xf(x, y) ≡ ∂xf(x, y) ≡ 0 is marked in red.

to be done the fourth integration, together with the still present dωp′ and dωk′ as well as the new p̃

integration. With this knowledge, it is possible to reuse the old integration algorithm. The change
is merely replacing the minimum function with an integration over the p̃ interval, by using again
the trapezoidal rule, as well as dropping a 2π factor and instead integrating over this angle. At
each of this integration steps, the Mandelstam variables can now be calculated, with which G can be
evaluated, which is used to scale the the contributions to the integral which had been present before.

3.4 Calculation of Mandelstam variables

Indeed, the calculation of the Mandelstam variables is at this point easily possible. P̃ (the 4-vector
to p̃) itself is the corresponding vector to s, so s = P̃ 2. u can be calculated by 4m2 − s − t. One is
left with determining t.

t = (P − P ′)2 = 2m2 − 2ωpωp′ + 2pp′. (3.15)

The last term becomes in cartesian coordinates

2[(p cos(α))(p′ cos(β)) + (p sin(α))(p′ sin(β)) cos(Ψ)] (3.16)

with α, β being the angles in the p̃pk and the p̃p′k′ plane between p̃ and the respective momentum,
and Ψ the azimuthal angle over which the integration is done, e.g. the azimuthal angle of one of both
planes if the zero point of the angle is set in the other plane. The sines can be determined knowing that
the area of a triangle with edges a, b and c is given by 1

2ab sin(γ) for γ the angle between a and b, and at
the same time the area is given by Heron’s formula as 1

4
√

(a+ b+ c)(b+ c− a)(a− b− c)(a+ b− c).
This allows one to extract the sine. The cosine terms could be computed by trigonometric functions,
or, numerically cheaper, by using k′2 = (p̃− p′)2 and the equivalent formula for cosα. The resulting
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3.4. Calculation of Mandelstam variables

relationships have only to be carefully formulated in order to avoid division by small numbers and
achieve a high computation speed.

For each gridpoint of the energy grid (with N points), a grid in the momentum range of p̃ (with NP

points) is initialised, over which is integrated by the trapezoidal rule. The evaluation is done in the
midpoint to avoid division by zero. For Ψ, a fourth of the integration interval needs to be covered.
Indeed, one half can be neglected by the symmetry of the cosine. The second simplification can be
achieved knowing that p′ sin(β) = −k′ sin(γ). Therefore, integrating only from 0 to π/2 and taking
the result times 4 is not equal to integrating over the full interval, but equals instead half the contri-
bution for fixed p′ and k′ and half the contribution for exchanged roles. Therefore, due to summing
over p′ and k′, one gets in the end the right result. This is indeed a huge improvement, which can
theoretically reduce the computation speed by a factor four. The number of angle gridpoints was
chosen in the following to be equal to NP .

Nevertheless, this generalisation comes at a high computational cost. Even if the number integration
points for Ψ and p̃ can be chosen smaller than N , these additional integrations have to be done for
each gridpoint (p′, k′) at each timestep. Especially the setting up of the P̃ grid is a relevant slowdown.
It would be desirable to do this once during the initialisation process and access it when needed.
However, for a fixed number of integration points in the p̃ interval, the position of the grid points is
different for each combination of p′ and k′ (up to switching) and would have to be saved for each of
them, resulting for N = 1024 momentum values and NP = 12 p̃ gridpoints in a memory need of over
80 GB, far more than was available for the upcoming simulations. Also, the reduced computation
time would be compensed by the time needed to load the gridpoints. An alternative strategy was
considered, by using a fixed step size instead of a fixed number of steps, which allows to reduce the
amount of needed precalculated data by a factor of N . This solves the memory problem, however,
a very small step size in p̃ is needed to not loose information about small-s-processes and a general
trapezoidal integration formula needs to be used for the now unequally distributed integration points,
resulting in highly increased computation time. Therefore, the grid over p̃ was dynamically computed
when needed.
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Chapter 4
Applications

In the following, the potential of this new algorithm for a deterministic Boltzmann solver with full
angular dependence shall be demonstrated. Three examples of possible modifications of the coupling
will be shown: cutoffs in the coupling as well as the more relevant amplitude of the gluon-gluon
scattering and the φ3 theory.

It shall be again mentioned that this new range of applications comes at a cost. The algorithm has
to do a considerably higher number of computations. As the old algorithm could only compute the
φ4 theory, a comparison of performance is only possible in this case. The following table gives an
idea of the slowdown due to the new algorithm.

original algorithm new algorithm
Average time per step 9.3s 17.1s

Table 4.1 – Comparison of the new and old algorithm in terms for a simulation with φ4 interaction
for N=1024 for both algorithms and NP=12 for the new algorithm. Execution in two threads.

An average slowdown of 84% is observed. For more complex scattering amplitudes, the difference in
computation time will increase. Due to this, the following simulations were done on a cluster with 16
cores, allowing a high parallelization. This is indeed a great advantage of the presented algorithm,
which allows independent calculations of energy gridpoints and by this ensures a maximal efficiency
of parallelization. This is crucial in order to reach reasonable computation times.

4.1 φ4 theory with suppressed interactions for small or large
momentum

The first application is motivated by the wish to verify the legitimacy of the approach. Choosing
a very high upper cutoff value should in fact have no change on the outcome at all. However, the
function of the cutoff has to be carefully chosen. If it does not respect the symmetries of the system,
the conservation laws might be violated. The integrand is symmetric under the exchanges P ↔ K

and P ′ ↔ K ′ as well antisymmetric as under (P,K) ↔ (P ′,K ′). A possible choice is therefore
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4.1. φ4 theory with suppressed interactions for small or large momentum
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Figure 4.1 – Development of the particle density in the condensate in a simulation with N=1024.
Original code from [17] in comparison with modified code for different values of a upper cutoff ∆.
Top: CGC-like initial conditions. Bottom: exponential initial distribution.

to compare the cutoff with the value of G(s, t, u) = s2 + t2 + u2, which naturally respects these
symmetries. This will be done with the Heaviside-distribution, via

θ(∆−G(s, t, u)) (4.1)

Figure 4.1 shows at the top the time evolution of the density of condensed particles for the CGC-like
initial condition

f(0, p) = f0θ(Q− p) (4.2)

for a coupling of the form 4.1, as well as the result with the same initial conditions of the code of
[17] for momentum independent interactions. In a first observation, one can see that the graph of
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4.1. φ4 theory with suppressed interactions for small or large momentum
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Figure 4.2 – Evolution of the particle density in the condensate in a simulation with N=1024.
Original code from [17] in comparison with modified code for different values of a lower cutoff ∆′.
Top: CGC-like initial conditions. Bottom: exponential initial distribution.

the unmodified code is visually identical to the graphs for a cutoff of 20 and 10. This does not only
support the claim that the generalisation is consistent with the old results, as it restores the original
outcome for high cutoffs. It also sheds light on the process of condensation. As for this run, the
maximum allowed momentum was of value 4, the high ∆ were in fact reached. Processes of particles
of high energy exchanging energy with low energy particles were suppressed, but this resulted in
almost no visible effects. With the given CGC initial conditions, the infrared contributions control
the initial slope, which is almost identical for all cases except ∆ = 0.1. This is due to the fact that
for the choice of the initial maximum momentum of Q = 1, the maximum value for s2 + t2 + u2 is of
the order of m2 and lies by this lower for all cutoffs greater than 0.1.
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4.1. φ4 theory with suppressed interactions for small or large momentum

This can be made plausible by a short calculation. For the case that the particle corresponding to p
lies in the condensate and for small masses, one has

s2 + t2 + u2 = 4m2(ω2
k + ω2

p′ + ω2
k′) +O(m3). (4.3)

Now, for the cutoff to influence the calculation one needs
∆

4m2 ≤ ω
2
k + ω2

p′ + ω2
k′ . (4.4)

But for ∆=0.25 and m=0.1 this gives 6.25, a value which cannot be reached by the right hand side
for the initial condition. For ∆ = 0.1, the left hand side gives 2.5. This can be also not reached for
all momenta corresponding to the energies smaller than Q = 1. However, 2.20 allows processes with
zero momentum distributions involved, as long as they preserve energy conservation, which is for the
chosen mass just enough let processes arise which are suppressed for this value of the cutoff under
this initial conditions. Nevertheless, the energy conservation prevents that unoccupied channels of
such high energy are accessed that a cutoff of 0.25 has influence on the initial slope, as a sum of
energies over 6 cannot be achieved with either the ingoing momentum being smaller than 1 or both
outgoing. This explains why the slope only changes for ∆ = 0.1 in figure 4.1, as for only such a
cutoff, the interaction was modified.

If an initial condition is chosen where hard particles exist, the slope will not be constant for all cutoffs,
as the cutoff-value is always reached due to the hard particles. This becomes visible in the lower
figure of 4.1, where for comparison the evolution starting with a Bose-Einstein initial distribution of
the form

f(p) = 10
exp (

√
p2 + 0.25− 1)

(4.5)

is shown. Note that this is not the equilibrium distribution for this system as otherwise no time
evolution would be observable.

For cutoffs which enter the infrared zone, less momentum is transferred, which slows down the con-
densation process and gives more time to the condensate to lose particles. This explains the shift of
the transition point in both figures. If the cutoff reaches the order of m2, the simulation becomes
unstable, as almost all interactions get suppressed. Although it seems that for stricter cutoffs not
the same maximum condensate density level is reached, due to the H-theorem, it is known that the
same value will be reached for t→∞. The evolution towards the final condensate density has been
slowed down by the cutoff. The difference in the equilibrium condensate density levels between the
upper and lower figure of figure 4.1 can be explained by the different equilibrium condensate density
due to the difference in the initial conditions.

In figure 4.2 all interactions below a certain value of s2 + t2 + u2 are suppressed, realised by a cutoff
function like

θ(G(s, t, u)−∆′). (4.6)

The condensation process is governed by the infrared regime. Only when the cutoff does not suppress
this regime completely, the condensation can happen. However, at no point the condensate density
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4.1. φ4 theory with suppressed interactions for small or large momentum

decreases, the transition starts immediately with a cutoff-dependent slope, which goes to zero for a
complete cutoff of the infrared domain.

This strong dominance of the infrared regime here, which suppresses the loss of condensate particles,
is not caused by the CGC-like initial condition like for the UV cutoff. This becomes evident as one
can see the same behaviour for both the CGC-like initial condition as for the exponential initial
condition. For the CGC-initial condition, for cutoffs stricter than ∆′=0.1, there are again initially no
particles with a momentum greater than Q (as explained before). If there are only soft particles and
a high cutoff, no interaction is possible which has high enough values for the energies as in the initial
distribution the sum of the energies can not exceed the value of ∆′

4m2 . The momentum distribution
has to develop hard particles in order for the condensation to set in. This is again not the case for
∆′=0.1 and for the smaller cutoffs of the exponential initial distribution, for which the condensation
sets in immediately. However, even if ∆′ is set low enough so that this value is exceeded, one can see
no loss of condensate.

This observation becomes more clear when one takes a look at distribution dependence of the con-
densate density development in 2.20. This dependence can be reformulated to read

f(p′)f(k′)− f(k)− f(k)f(p′)− f(k)f(k′) (4.7)

The condensate density is increased by interactions with final particles having a product of their
distributions being higher than distribution of the second initial particle added by the product of
their distributions with this particle. The energy conservation restricts the possible combinations, and
restricts the final momenta to be smaller than k. Just as the CGC initial distribution, the exponential
one favours infrared particles too. As a consequence, this term is much smaller if one of the final
momenta is close to k and the other one small, as the distribution function for the small momentum
will be higher. Additionally, the main loss terms are from interactions with a low value for k due
to the higher distribution in the infrared zone. This shows that the most important contributions
to a loss of condensate density arise from interactions which are in the deep infrared region, which
is suppressed by the cutoff. One therefore sees that interactions with a very low invariant mass and
momentum transfer cause a loss in condensate density, whereas interactions in the medium infrared
with a considerable momentum transfer increase the condensate density, as the loss of condensate is
suppressed for lower momenta than the gain.

In figure 4.3, the process of the delay of the transition is further illustrated. Whereas for a higher
UV cutoff, the final distribution is close to the original one, for a lower cutoff, the distribution of
higher momenta shows a remnant of the original discontinuous distribution of momenta. In fact,
the two cascades during the thermalization process have been delayed by the cutoffs. Indeed, during
thermalization two processes happen: the distribution spreads out into the UV regions in order to
increase entropy, which is compensated by populating soft momenta to ensure energy conservation,
including the condensation process. The reason for the effect of the cutoffs is that for high momenta,
the maximal momentum transfer lies higher, and by this higher values of the Mandelstam variables
are possible, leading to a higher amount of possible interactions being suppressed. More particles
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4.2. Scattering Amplitudes in φ3 and Yang-Mills theory
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Figure 4.3 – Momentum distribution at g4t = 1000 for a simulation N=1024. Original code from
[17] in comparison with modified code for a UV cutoff ∆/IR cutoff ∆′ . A CGC-like initial condition
was used.

stay in the infrared regime as they cannot progress deeper into the ultraviolet area. With a cutoff in
the infrared regime, the opposite effect is observed. One can observe an agglomeration of particles in
an intermediate range which would proceed to lower momenta if the interactions would not be sup-
pressed. At the same time, the deep ultraviolet regime is also comparatively underoccupied, as more
energy is now present in the area of lower momenta. In fact, the IR cutoff hinders the establishment
of the local equilibrium for low momenta. As the occupation number for the CGC initial condition is
high for low momenta, there is high scattering rate in this area which creates rapidly an equilibrium
in this zone. But these scattering rates are suppressed for an infrared cutoff.

After these illustrative examples, the full power of this generalisation shall be demonstrated by using
more common scattering amplitudes.

4.2 Scattering Amplitudes in φ3 and Yang-Mills theory

Scattering amplitudes in massless theories usually contain inverse powers of the Mandelstam vari-
ables. If one would use this term directly into the simulation, it would get unstable due to infrared
divergences. Indeed, t and u can reach zero. Instead, a regularisation is necessary, at least when
higher order corrections are not included in the amplitudes. One may introduce a Debye screening
mass, a phenomenon well known from QED by which for example the Coulomb potential of a static
charge is modified at great distance. It is derived from the self energy. An approach similar to QED
for QCD fails at higher orders due to the non-perturbative behaviour of QCD, however, is very sim-
ilar in leading order. In fact, the leading order correction can be derived the same way as for QED.
This is done by setting µ2 = limp→0 ΠL(0, p), with Πµν(p0, p) the self energy of the gluon and ΠL
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4.2.1. φ3 theory

its longitudinal component (the order of taking the energy and the momentum zero is important).
The longitudinal component is taken in analogy to the Coulomb potential, for which the transverse
projector does not couple to a static charge. In other words, the Debye screening mass in leading
order is the small momentum transfer limit of the longitudinal self-energy, which is equivalent to the
scattering off an infinitely heavy, static object. This gives for the gluon the result ([58, 59])

µ2 = g2NCT
2

3 (4.8)

for a SU(NC) Yang-Mills theory in thermal equilibrium at the temperature T , which is derived
from the hard thermal loop approximation (HTL) [47]. In this approximation the momenta of
the internal particles of the self energy are assumed to be hard, i.e. of order of the temperature or
chemical potential, whereas the external momenta are soft, i.e. of the order gT , which is in agreement
with the model here. The higher-order corrections would need instead a careful, non-perturbative
resummation [60, 61], as the extraction from the electrostatic propagator would be gauge dependent
[62]. Nevertheless, for our applications the leading order would be sufficient. It would be now possible
to keep track of the Debye mass during the simulation, using the reformulation of the term as applied
in [63], which is of the form

µ2 = 4
π
g2
∫

d3p

(2π)3ωp
(NCf(p)). (4.9)

The Debye mass acts as a cutoff in the infrared sector and stabilises the calculation. However, this
has a drawback. Other than for the gluon pole mass, energy conservation would be not endangered,
but the computation could be slowed down. Apart from that, it would be interesting to study how
strong the dependence of the screening mass is. Therefore, it will be at this point presented how
different choices by hand of the screening mass (in the order of the effective mass, which is the right
order for the screening as an approximate calculation showed) affect the outcome of the simulation.
From now on, t and u will be changed to t− µ2 and u− µ2 as it was done in [63]. The introduction
of a Debye mass can be done in a similar way for a Yang-Mills as well as for a φ3 theory, however,
the analytic value would be of course different for higher orders.

4.2.1 φ3 theory

In this example, it is assumed that the interaction is governed by an underlying φ3 theory instead
of the Yang-Mills-theory of QCD. A 2 → 2 interaction is in this model possible via three channels,
giving a squared scattering amplitude proportional to

g4
[1
s

+ 1
t− µ2 + 1

u− µ2

]2
(4.10)

Taking a look at figure 4.4 shows the strong influence of the screening mass. The values were chosen
in the range of what would analytically appear using 4.9. For greater values, it cuts off more infrared
contributions, which are crucial for the condensation process with the CGC initial condition, as dis-
cussed earlier. Due to this, the transition happens later. Until the transition point is reached, the
condensate is loosing more and more particles, as the loss is proportional to the unscreened s-channel
as one can see in 4.7. An interesting phenomenon is visible for µ2 = 0.2, for which the condensate
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4.2.1. φ3 theory
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Figure 4.4 – Evolution of the particle density in the condensate in a simulation with N=512 and
NP=12. φ3 amplitude with different values for the Debye screening mass µ2. The upper figure is is
a zoom-in of the figure in the bottom.

density is increasing for a short moment.

Indeed, in figure 4.5 it becomes obvious that for the same initial conditions, the initial slope is highly
dependent on the value of the screening mass. Here, instead of the scattering amplitude, its deriv-
ative with respect to the screening mass was inserted in the ∂tnC(t) integral and the values where
compared for different screening masses. As expected, the initial slope has a maximum around a
screening mass of 0.18, which matches with the observation in figure 4.4. There is no minimum, as
it seems to be constantly falling for µ2 → ∞. This example underlines the high importance of the
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4.2.2. Yang-Mills theory
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Figure 4.5 – Derivative of the initial slope in the φ3-theory for different values of the screening mass.

correct choice of the Debye screening mass, which has to be known as exactly as possible for a correct
qualitatively behaviour at early times, at least for a φ3 interaction. However, for later times, the
effect of a change of the screening mass is merely reduced to a speed-up/speed-down, as long as it is
not of higher order than t or u.

4.2.2 Yang-Mills theory

A more realistic amplitude for the gluon plasma is the gluon-gluon scattering amplitude, which, up
to prefactors, reads in vacuum

g4
[
3− ut

s2 −
su

(t− µ2)2 −
st

(u− µ2)2

]
(4.11)

where the screening mass was included. Note that s does not need to be regularised, as it is strictly
positive. Again, on can take a look at different values of µ. Figure 4.6 shows that the effect of the
screening mass is much smaller than for the φ3 amplitude. Indeed, the transition happens very shortly
after the start of the simulation. A change of the screening mass only slightly shifts the transition
to a later time. This amplitude of a Yang-Mills theory provides a more realistic setup for studying
the thermalization process in the CGC than the original φ4 theory used in [17]. Indeed, it would be
interesting to investigate the thermalization process with this improved simulation. As explained in
the introduction, the speed of the thermalization process, in other words the speed with which the
equilibrium state is reached in heavy ion collisions, is an important open question to be explained
from QFT. It is therefore a possible approach to compare the timescale with which thermalization
happens in the φ4 theory in comparison to the now achieved improvements. However, it is not clear
how to compare the timescales of the simulation, since the amplitudes of φ4 and Yang-Mills theories
lead to different cross-sections. A possible strategy for comparison which will be used here, is to
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4.2.2. Yang-Mills theory
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Figure 4.6 – Development of the particle density in the condensate in a simulation with N=512 and
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rescale the time so that the rates of variation of the condensate density at t = 0 are the same in both
theories. This is displayed in 4.7. A Debye mass of 0.1 was chosen.
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Figure 4.7 – Development of the particle density in the condensate in a simulation with N=512,
comparison of speed between gluon-gluon-scattering with µ2 = 0.1 and the φ4 theory.

It is possible to make two observations. The first is that the transition starts quasi-instantly in
Yang-Mills theory in comparison to the φ4 model. Although there is still a loss of condensate in the
beginning, it stops around 20 times earlier. Additionally, the transition resembles much more to a
discontinuity. Even for long after the transition happened, the condensate is not completely filled for
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4.2.2. Yang-Mills theory
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the φ4 model, and continues to grow for a long time towards the same value as for the Yang-Mills
term. On the other hand, for the latter one the condensate density is quasi-static after a short time
after leaving the quasi-discontinuous phase. This is a hint that the Yang-Mills term shows the speed
up in thermalization which is required to match the hydrodynamical behaviour as outlined in the
introduction. Therefore also a look at the momentum distribution is taken.

Figure 4.8 shows the momentum distribution shortly after the transition for the gluon-gluon-scattering,
shortly after the transition in the φ4 theory and for late times. One can see that after the transition,
the simulation with the Yang-Mills term has basically reached the equilibrium. There are only small
changes in the UV region at later times. This is not the case for the φ4 theory, where after the
transition the transfer between UV and IR regions is not yet completed and goes on with decreasing
speed. However, in comparison with the cutoff behaviour studied earlier, the development for the
Yang-Mills-term shows no retarded behaviour in specific momentum regions, but shows the same
qualitative behaviour as the φ4 simulation, except some numerical inaccuracies in the deep IR re-
gime. The Yang-Mills term respects the local equilibrium for small momenta as observed before in
the φ4 theory. Its main feature is a faster and less smooth condensate transition, which increases the
speed of thermalization.
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Conclusion

Starting form the results of [17], which explored the thermalization process in kinetic theory with
elastic collisions, the simulation was improved. Knowing that kinetic theory is a simpler approach
to the problem of thermalization in CGC than for example CSA, it is important to widen range of
applicability, as the original algorithm was only applicable to the elastic 2 → 2 collision term with
scalar φ4 interaction. For this, simplifications of the calculation were needed in order to be able to
solve the problem computationally. The approximations done in [17] were carefully revisited and
unnecessary assumptions were dropped. Although the runtime of the simulation was considerably
increased, it is now possible to include any elastic 2→ 2 amplitude which respects the symmetry of
the interactions.

The generalisation to reach this was tested for its consistency with the old results both analytic-
ally and numerically, where no conflict could be found. Then, several examples of the potential of
the new algorithm were presented. Momentum-dependent cutoffs revealed the dependence of the
development of the condensate density on almost only the infrared sector for the standard CGC
initial conditions. Transition time and condensate density remain almost unchanged as long as the
cutoff does not suppress interactions amongst soft particles. In the infrared sector itself, interactions
between particles of lower energy are predominantly responsible for a condensate loss, whereas the
medium infrared sector is responsible for a gain of condensate particles.

In a second step, the full potential of the code was proven by simulating the 2→ 2 scattering process
both in the φ3 theory as well as with a gluon-gluon scattering amplitude. Here, the dependency on
the choice of the Debye screening mass was demonstrated, which was considerably greater for the φ3

theory. For this, the initial stages compared to φ4 theory shows a qualitatively different behaviour for
a certain range of screening masses. For the Yang-Mills interaction, on the other hand, the screening
mass only influences the speed of the transition. It was demonstrated that the usage of the gluon-
gluon scattering amplitude allows a much faster thermalization process as observed numerically with
the φ4 theory. Experimental observations demand a very high speed of of thermalization.

39



Conclusion

Two parameters of the simulation could in principle be computed instead of set by hand: the mass
of the particles as well as their screening mass. It was discussed that the effective mass should not
be computed for each timestep, although being time dependent, in order to avoid violations of en-
ergy conservation. Instead it could be determined approximately form the final distribution. The
screening mass, on the other hand, could be computed at the end of each timestep. This could lead
to further improvements of the simulation.

Another possible approach of improvements is of course to include higher-order contributions in the
2→ 2 scattering amplitudes. However, the evolution of the Glasma is not necessarily limited to that.
Inspired by [51], it would also be interesting to include non-elastic processes. This would relax the
particle number conservation and by this could have a strong impact on the condensation process.
Another interesting extension would be to drop the assumptions of isotropy or spatial homogeneity,
however, this would cause a great loss of computational speed. Most Boltzmann solvers rely on
such symmetries. Additionally, it could be tried to include the rapid boost-invariant longitudinal
expansion, too.

From the analytical side, it would be interesting to find means in order to determine the point of
transition without being dependent on the numerical simulation. By this, it would be possible to
predict the timescale of thermalization, as a thermal equilibrium can be only reached after the con-
densate has been formed. However, finding the for example the inclination point in 2.20 is a difficult
task.

Apart from this, it should be also mentioned that the original motivation of studying the thermal-
ization process was the great success of ideal hydrodynamic simulations as pointed out in the in-
troduction. However, there has been no evidence yet that full thermalization or even isotropization
is reached [64]. This questions whether hydrodynamic behaviour emerges at the point when full
thermalization from the initial conditions is achieved, or at another point in time. This shows that
considerable work is still to be done in order to completely understand the thermalization problem
for heavy ion collisions.
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