
Machine learning techniques applied to
Monte Carlo integration

A thesis submitted in partial fulfillment of the requirements for the degree of
Master of Science in High Energy Physics

by

Niklas Götz

September 2020

Supervisors :
Dr. Nicolas Deutschmann

Dr. Valentin Hirschi
Dr. Achilleas Lazopoulos

Prof. Dr. Charalampos Anastasiou
I didn’t sign up for this.

Department of Physics
Institute of Theoretical Physics
ETH Hönggerberg
Wolfgang-Pauli-Str. 27
8093 Zürich
Switzerland

Machine learning techniques applied to Monte Carlo
integration

Niklas Götz

Abstract

The numerical calculation of cross sections through the integration of matrix elements of-
ten suffers from high computational cost or low precision due to the presence of peaks and
cuts. In this thesis, we present a machine learning method in order to improve the effi-
ciency of Monte Carlo integrations without prior knowledge of the integrand. This neural
importance sampling algorithm is based on normalizing flows in the form of piecewise-
quadratic coupling cells. It is an adaptive method that is trained on the integrand and
provides a transformation which decreases its variance. This algorithm is implemented
and tested on multidimensional test functions and tree level amplitudes. Its performance
is compared with the commonly used VEGAS importance sampling. The importance of
hyperparameter optimisation is demonstrated and an insight on the importance of dif-
ferent hyperparameters is given. The present implementation can be run on GPU, and
is combined with an efficient phase space generator which allows fast and parallelised
integration.

i

Acknowledgements

I would like to express my gratitude to my primary supervisors, Dr. Nicolas Deutschmann
and Dr. Valentin Hirschi, who guided me throughout this project. I am very grateful for their
support and dedication throughout these months of work, in these unprecedented circumstances.
Without their crucial assistance, this project would have not been possible. I would also like to
thank Dr. Achilleas Lazopoulos for giving me the opportunity to work on this fascinating topic,
as well Dr. Ben Ruijl for his technical support.

I am very grateful for all the inspiring researchers who shared their knowledge with me in the
past six years. Their exemplary dedication to science has been a guiding principle to me.

I would also like to thank all my friends from the High Energy Physics Master’s Program. Their
passion for research and their friendship deeply inspired me and will always be one of my dearest
memories of these two years.

Additionally, I would like to express my deep gratitude towards my partner, for her support,
understanding and advice. Her contribution to everything I have achieved since we met is
invaluable. I am also thankful to my father, who never doubted my potential and always
encouraged me to work hard for my dreams.

I would also like to thank the Studienstiftung des deutschen Volkes, the Max Weber-Programm
and the Fondation de l’École polytechnique for funding my studies and supporting my personal
growth and development.

ii

Contents

Introduction 1

1 Numerical integration 4
1.1 Monte Carlo method . 4
1.2 Importance sampling . 5
1.3 Change of variables . 6
1.4 The VEGAS algorithm . 7

2 Neural importance sampling 10
2.1 Basics of Neural Networks . 10
2.2 Normalising Flows . 13
2.3 Coupling cells . 14

2.3.1 Number of coupling cells . 16
2.3.2 Affine Coupling Transforms . 17
2.3.3 Piecewise-Linear Coupling Transforms 18
2.3.4 Piecewise-Quadratic Coupling Transforms 19

3 Neural importance sampling in two dimensions 21
3.1 Implementation . 21
3.2 Comparison of piecewise-linear and piecewise quadratic coupling cells 26

3.2.1 Performance of the piecewise-linear coupling cell 27
3.2.2 Performance of the piecewise-quadratic coupling cell 28
3.2.3 Analysis of the behaviour of piecewise-quadratic coupling cells 31

3.3 Comparison to the VEGAS algorithm . 35

4 Investigation of the quadratic-coupling cells in higher dimensions 37
4.1 Setup . 37
4.2 Results . 39
4.3 Analysis of the impact of hyperparameters . 43

iii

5 Phase Space Generation 47
5.1 RAMBO . 47
5.2 RAMBO on diet . 50
5.3 GPU compatible implementation . 52
5.4 Phase Space Cuts . 53
5.5 Hadronic Processes . 55

6 Neural importance sampling for cross section integrations 57
6.1 Modification of the loss function . 57
6.2 Comparison of the neural importance sampling and VEGAS 58

6.2.1 e+e− → µ+µ− . 58
6.2.2 gu→ gu . 59
6.2.3 uc→ ucg . 60
6.2.4 dd̄→ dd̄ via Z . 61

Conclusions and outlook 65

Appendix 68

References 76

List of Figures 80

List of Tables 83

iv

Introduction

The ongoing experimental search for new signals at colliders such as the LHC is not only
empowered by progress in experimental methods, but also by the ability to generate precise
predictions from the theoretical models one wants to test. Such predictions often heavily rely
on numerical simulations, which are a source of uncertainties. In order to be able to reliably
test theoretical models, it is therefore necessary to reduce the uncertainties as far as possible.

Event generators are an important example for such numerical simulations. They link theory
and experiment by generating virtual collider events using Monte Carlo (MC) methods [1, 2].
They can be exploited to produce physical events that are comparable to the ones that are
directly observed at colliders. By combining these events it is possible to predict observables in
an equal fashion as in experiment, where both the prediction and the experiment are affected
by uncertainties. However, as the increasing precision of experiments leads to a higher need of
precision for the numerical simulations too, the consumption of more and more computational
resources grows at an unsustainable pace [3]. The computational cost for reaching a satisfying
precision can be very high, especially for complex multi-jet cross sections. During the search for
New Physics in hard-scattering events, processes with a high multiplicity of final-state particles
are of high interest, especially those with many hard jets or intermediate elements. Examples
for this are signals of micro-black-hole decay to many particles in proton-proton collisions [4], or
6-7 jet events from R-parity violating supersymmetric processes [5]. Such complex interactions
demand a precise evaluation of the partonic scattering matrix which features many final state
particles and can involve thousands of Feynman diagram contributions. Due to the appear-
ance of resonances, regularised singularities, quantum-interference and kinematical cuts, it is
extremely challenging for many adaptive algorithms to increase the efficiency. For such multi-jet
events, it has been shown that the unweighting efficiency is an important factor for the compu-
tational load [6, 7]. The unweighting efficiency determines how many of the sampled events can
be used for the integration. In traditional MC integration, a random phase space point xi is
interpreted as an event, and weighted by the value of the differential cross section at this point,
wi = f(xi). The integral is then the mean of all weights over N events, < w >N . In order

1

Introduction

to perform unweighting, one aims at choosing a subset of events which follows the probability
distribution function which is given by the weights itself, i. e. that the event xi occurs with a
likelihood of f(xi)

fmax
= wi

wmax
. The unweighting efficiency refers then to the average likelihood of

accepting an event with this "hit-or-miss" algorithm. As a consequence, most generated events
are not used if the unweighting efficiency is low. Although it is possible to modify the Monte
Carlo integration in such a way that the unweighting efficiency is optimised, this requires spe-
cific knowledge of the integrand and is not a solution in cases in which the specific structure is
not known.

Adaptive MC methods are a valuable alternative [8–15]. They adapt to the integrand by op-
timising the integration procedure to the form of the integrand. They often achieve this by
importance sampling. Importance sampling means that one does not sample the random points
uniformly over the integration domain, but more frequently in regions where the value of the
integrand is high and gives a higher contribution to the value of the integral. One commonly
used technique for this is the VEGAS algorithm [8]. It histograms the integrand along the
coordinate axis and optimises the size of the histogram bins in order to learn the distribution
of the integrand. However, as it does this for each axis independently, this can lead to sub-
optimal behaviour: VEGAS assumes the factorizability of the integrand, a requirement which
fails if the variables have complex correlations. Foam [16] is a popular alternative based on
stratified sampling, that means dividing the integration domain in subdomains. It uses an
adaptive strategy to attempt to model the correlations of the variables, but the number of re-
quired sampling points grows exponentially with the number of dimensions. Foam and VEGAS
are not satisfying in general, as often high-dimensional phase space integrals with non-trivial
correlations between dimensions are required in important theory calculations. Therefore, it
seems necessary to restrain from general adaptive approaches and to focus on specialised tools
for the integration of specific processes, like WHIZARD [17] and MadGraph5_aMC@NLO
[18]. These tools optimise the integration of differential cross sections by taking into account
the knowledge about the process.

The topic of adaptive Monte Carlo methods has gained more attention due to the success
of the field of machine learning (ML), which introduces new methods and tools and became
also relevant for many areas of high-energy physics [19]. Regarding event generation, these
techniques were used first for the integration in the context of high-energy physics in the form
of boosted decision trees and generative deep neural networks to improve the performance of
MC integration [20]. This improved the integration of non-separable high dimensional functions,
for which traditional algorithms failed. Other authors proposed to use a dense neural network
(DNN) in order to learn the phase space directly, which shows promising results [21]. A variable
transformation was performed, which demonstrated that it is possible obtain significantly larger
efficiencies for three body decay integrals than standard approaches. Theoretically, an algorithm
based on a neural network (NN) can be inverted after the training in order to be used for the

2

Introduction

MC integration as a sampler. The inversion of the NN requires inverting its Jacobian, which
incurs a computational cost that scales as O(D3) for D-dimensional integrals. Therefore, it is
extremely inefficient to use a standard NN-based algorithm for sampling, as especially multi-jet
events have a very high-dimensional phase space. This is because an n particle final state phase
space is a D ∼ 3n− 4 dimensional integral.

The goal of this thesis is to study NN architectures that can be trained on integrands in order
to reduce the variance during the Monte Carlo integration and by this, increasing its precision.
A ML algorithm based on normalizing flows (NF) provides a promising candidate for this.
Normalizing flows are bijective mappings between statistical distributions [22, 23]. The idea of
combining them with a NN for the MC integration was first proposed for non-linear independent
components estimation (NICE) [24, 25], and later generalized [26, 27]. The crucial point in
this approach is the introduction of coupling cells (CC), which allow the usage of NNs in the
construction of a bijective mapping between the target and initial distributions in such a way
that the Jacobian can be now evaluated in O(D) time. In this thesis, an approach based on
these advances will be studied, similar to the recent explorative studies performed with these
techniques [28–30].

Chapter 1 will remind about the MC integration method and the VEGAS algorithm, which will
be the primary comparison to the ML-based algorithm discussed in this thesis. Chapter 2 out-
lines the structure of a NN, the definition of normalizing flows and how both can be combined
efficiently in order to achieve an adaptive MC method. Chapter 3 discusses the implement-
ation of the coupling layers for a two-dimensional integral, and compares the performance of
the piecewise-linear to the piecewise-quadratic coupling cells. Chapter 4 discusses modifications
necessary for the application in higher dimensions as well as the procedure of hyperparameter
search, and demonstrates the performance of the approach in comparison to the VEGAS al-
gorithm for gaussian multi-peaks. Chapter 5 introduces phase space generation algorithms, in
order to be able to use the importance sampling in combination with matrix elements generated
by MadGraph 5. The phase space generator maps the output of the mapping by the normal-
izing flows to phase space points at which the matrix element is evaluated, and is therefore a
central component both for speed as for precision of the approach. An efficient implementation
is demonstrated. Finally, Chapter 6 demonstrates the performance of the proposed approach
on selected processes of high energy physics.

3

Chapter 1
Numerical integration

In order to investigate MC methods in the context of machine learning, it is necessary to gain
an understanding of the sources of uncertainties of numerical integration. Only the Monte Carlo
method is of interest for us, as other integration rules become very costly for higher dimensions.

1.1 Monte Carlo method

We start considering to integrate a function f(r) over the d-dimensional unit hypercube Ω - for
the application in high-energy physics, this is could be the differential cross section which has
to be integrated over the phase space. In the case that the analytical solution is unknown, this
integral can be approximated by

Î
(N)
X = 1

N

N∑
i=1

f(xi) −−−→
N→∞

I =
∫

Ω
dxf(x). (1.1)

Here, the xi are randomly drawn, such that they are uniformly distributed in Ω (with a norm-
alised uniform distribution). The expression for the precision follows from another perspective
on the integral, by seeing the integral as the expectation value for the value of f for a random,
uniformly distributed x.

I = EX∼U(Ω)(f(X)) = EX∼U(Ω)(Î(N)
X) (1.2)

Now, with this perspective one is able to express the variance of the estimator for the integral
given by the MC method.

Var(Î(N)
X) = 1

N2

N∑
i=1

Var(f) = Var(f)
N

(1.3)

Var(f) may be determined by the unbiased sampling variance

Var(f) ≈ s2
N = 1

N − 1

N∑
i=1

(f(xi)− I(N)
X)2. (1.4)

4

1.2. Importance sampling

As long as the sequence {sn} is bound, the MC method gives an approximation to the integral
and converges to the true value of the integral for N →∞. Therefore, the uncertainty estimate
of the MC approximation becomes

σ(Î(N)
X) = σ(f)√

N
= sN√

N
(1.5)

and decreases asymptotically for N →∞.

1.2 Importance sampling

The last section showed us that for infinite amount of sampling points, the MC approximation
will eventually give an exact value for the integral. However, this is in general not satisfactory.

Firstly, it is interesting to look at the effect of adding additional dimensions to the problem. The
MC method does not suffer from the curse of dimensionality directly; for an arbitrary amount
of dimensions, the uncertainty of the approximation will be halved if the amount of sampling
points will be increased by a factor of 4. Nevertheless, the problem with the coverage of the
integration space stays. In order to reach a statistically significant statement about the integral,
all features, including for example small peaks, have to be hit by the sampling. This requires
sufficiently dense sampling. However, the density of the N sampled points falls with the number
n of dimensions as N 1

n . This is however only relevant for functions which suffer from strongly
varying features; a rather flat function can be safely approximated by an integral derived from
a sparsely distributed points, thus not suffering from any problems by dimensionality.

Secondly, amplitudes in High Energy Physics can become hard to integrate, especially when they
are of higher order or have many-particle final states or suffer from divergences (as an example,
see [31]). This leads to a very costly evaluation of the function f , so that it is unfavourable to
improve the integration precision by sampling more points, which leads only to an improvement
proportional to

√
N . This favours other strategies instead, as their computational cost can be

lower than of evaluating the integrand.

A more efficient approach for reducing the uncertainty is therefore to reduce the variance of f
itself. This is one possible way of approaching the idea behind importance sampling. Modifying
f by replacing it with f/g in such a way that it becomes similar to a constant function will
decrease the variance, and it will become zero for f/g being constant function. This would
turn the MC approximation exact. This can be realised by using a non-uniform probability
distribution function p(x) for the generation of the xi. The approximation then becomes

Î
(N)
X,p = 1

N

N∑
i=1

f(xi)
p(xi)

(1.6)

This change of a sampling density results in a weighted integration by a Riemann sum with the
measure dxp(x). The idea of importance sampling is therefore to sample the evaluation points

5

1.3. Change of variables

not with equal likelihood, but ideally proportional to the value of the integrand at the respective
point. The sampling likelihood is therefore increased for high values of the integrand.

An useful measure for the success of flattening the integrand is, as mentioned earlier, the un-
weighting efficiency. When generating N events, that means, evaluating the integrand at N
random points following the chosen distribution, one can take the average of its event weights,
that means, the value of the integrand and compare it with the maximum event weight in the
integration region:

εuw = < wN >

wmax
(1.7)

For a vanishing variance, the unweighting efficiency converges to 1, as a variance of 0 means
that the function value is everywhere equal to its mean.

1.3 Change of variables

Importance sampling can be realised by transforming the initially uniformly sampled points
through a variable transformation. We start by rewriting the form of the analytic integral in
1.1. The integral over x is transformed into an integral over y, where we have x = h(y), such
that y is sampled uniformly and x is sampled non-uniformly.

I =
∫

Ω
dy

dh
dy

(y)f(h(y)) = EY∼U(Ω)(
dh
dy

(Y)f(h(Y)) (1.8)

Now one can again write an estimator for this expectation value:

Î
(N)
Y = 1

N

N∑
i=1

dh

dyi
f(h(yi)) (1.9)

Again, the expectation value of this estimator is the true value of the integral, and the uncer-
tainty of the estimator follows now directly from 1.5:

σ(Î(N)
Y) =

σ(dh
dy(Y)f(h(Y)))
√
N

. (1.10)

From this it is clear that the desired choice of h is such that Jacobian dh
dy is proportional to the

inverse of f , as the numerator would then account to zero. If we assume knowledge about the
structure of f , then it will be possible to choose a variable transformation which reduces the
variation at a low computational cost. Examples for this are the multi-channel approach [32]
which optimises the computation for multiple peaks. However, the situation gets more difficult
when one wants to develop an adaptive MC integration, which tries to approximate the integral
consistently and fast without prior knowledge of its structure. For later use, we want to define
a loss function which measures the quality of the computed variable transformation.

6

1.4. The VEGAS algorithm

As it is our aim to reduce the uncertainty of the MC method, without taking into account how
many points we include into the evaluation, it is reasonable to choose the function uncertainty
as loss function:

L = σ

(
dh
dy

(Y, θ)f(h(Y, θ))|Y ∼ Ω
)
≈ L̂({yi}) = σ

(
dh
dy

(Y, θ)f(h(Y, θ))|Y {yi}
)
. (1.11)

Here, in a first step, parameters were introduced to the function h. This will be later the entry
point for an optimisation procedure. In a second step, the loss function is approximated by
not being evaluated over the whole integration space, but only over a finite set of points chosen
randomly from it. With this loss function at hand, it is now possible to create an algorithm
which optimises the variable transformation and by this the MC method.

1.4 The VEGAS algorithm

Before we describe how machine learning becomes relevant for importance sampling, it is im-
portant to also mention a very common adaptive algorithm whose performance will be used as
a benchmark during this work.

The VEGAS algorithm ([8, 9, 33]) is an adaptive algorithm for MC methods which performs
importance sampling by approximating the optimal sampling density. As discussed in the last
section, the right choice of sampling distribution is such that it approximates the integrand as
best as possible. In order to achieve this, the algorithm iteratively approximates the distribution
with a step function with M steps, so that it is of the form p(x) = 1/N∆xi. Each of this steps
has a likelihood of 1/M of having a random number out of its bin being chosen as a sample.
What is optimised during the process is the width of each of the steps, starting from equal
widths (which gives a uniform distribution) towards small step widths for peaks and wide ones
for regions of small contribution. The widths are optimised for each dimension separately.

In the one dimensional case, for each iteration, each of theM steps with width ∆xi is subdivided
into mi + 1 equal-sized subdivisions. mi is determined by the ratio of step-width and mean of
function value in this interval, such that steps with a big product of both are divided into smaller
sections:

mi = K
f̄i∆xi∑
j f̄j∆xj

. (1.12)

K is, as well asM , a hyperparameter of the simulation. f̄i can be computed by drawing samples
out each step interval:

f̄i =
xi∑

x∈xi−∆xi
|f(x)| (1.13)

where xi is the right endpoint of the step.

7

1.4. The VEGAS algorithm

Now, not every step was divided into the same amount of subsets, instead those steps with
a higher value of f have more substeps and by this a higher contribution. This reflects the
necessity of approximating the optimal sampling, p(x) = |f(x)|/

∫
f(x). In a last step, the

original number of steps M is recovered by recombining groups of subsets of a fixed number of
subsets. This means for example, that starting from the boundaries, the first three substeps are
joined, then the next three, etc. The effect is, as expected, a change of step width. Using the
evaluations of the integrand during the optimisation, an approximation of the variance can be
calculated and used in order to determine if the desired precision has been reached.

The algorithm can be generalised to arbitrary dimensions. For this, the probability distribution
will be factorised, one factor per dimension.

p(r) =
D−1∏
j=0

pj(rj) (1.14)

The algorithm is then being applied to each axis independently, and for D dimensions, the only
change is that 1.13 is changed to

(f̄i)2 =
xi∑

xi−∆xi

∑
d1,...,dD−1

f 2(r)∏
d1,...,dD−1 p

2
d(xd)

(1.15)

such that the distributions of the other dimensions are taken into account and the sum goes
over the grid of all over dimensions. All other steps stay identical.

Figure 1.1 – The VEGAS grid for two aligned gaussian peaks.

The factorisation of the distributions is the great downside of the VEGAS algorithm. During
the execution of the algorithm, when a fixed axis is optimised, it will see only the sum over all
other dimensions, and thus will underperform if the true distribution is not factorizable. In a
two-dimensional case with a Camel distribution (two Gaussian peaks), during the optimisation
of the x and the y axis, both will see both peaks and decrease the step width at the x (and
then y) coordinates of both of the peaks. If the peaks are aligned along an axis, this gives an

8

1.4. The VEGAS algorithm

Figure 1.2 – The VEGAS grid for two non-aligned gaussian peaks.

excellent result, as can be seen in Figure 1.1. However, if the peaks are on a diagonal, it gives
4 regions with high resolution instead of 2, as can be seen in figure 1.2.

Also, VEGAS performs better when the structure of peaks itself is aligned to the coordinate
axes. However, if one chooses a distribution with a high correlation between the coordinates
(which is common in High Energy Physics applications), for example a combination of a peak
at x = y and additional structures in the integration domain, the optimisation will fail because
the mapping on each of the axis will always show a peak. Thus, VEGAS will not be able to
detect the additional structures and its efficiency will be very low, as a quasi-uniform sampling
learned.

As a result, although VEGAS is a fast and highly parallelisable algorithm (for a recent imple-
mentation in Tensorflow, see [33]), it is not sufficient for many implementations and needs to be
combined with other, problem specific algorithms, like multi-channelling. This is the motivation
for looking into different approaches.

9

Chapter 2
Neural importance sampling

Adaptive importance sampling, such as the VEGAS algorithm, is a specific form of machine
learning: the algorithm adapts the grid autonomously in order to reflect the peak structure of
the integrand, which is the solution of an optimisation problem. Starting from this observation,
it is natural to look into more modern ML techniques. Motivated from the success of neural
networks in numerous other quantitative sciences, especially image generation and recognition,
ML via neural networks became of great interest for the question of phase space integration,
leading to multiple approaches trying to use them for this problem ([20, 21, 34–36]). One
especially promising approach however is a neural importance sampling algorithm which does
not use the NN in order to predict the sampling distribution itself, but instead predicts a set of
parameters which determines its form [26]. This will be done with the use of normalising flows.
In the following, after a short overview about NN, normalising flows and its core structure, the
coupling cells, will be discussed in detail.

2.1 Basics of Neural Networks

Neural networks are a class of functions from Rn → Rn which are differentiable and general
approximators. The latter means that the algorithmically learned functions are dense in the
space of functions of interest, which follows from a wide range of universal approximation
theorems for neural networks [37–39]. For our optimisation problem at hand, this means that
integrand can be approximated and that this approximation can be found by gradient descent.
The NN achieves this properties by being a composition of layers. Each layer is a mapping of
the form

xi+1 = σ(Wixi + yi) (2.1)

where xi is the output of the layer before and x0 is defined as the input data. The Wi and the
yi form together and affine transformation, referred to as a linear layer. σ is the a non-linear
activation function.

10

2.1. Basics of Neural Networks

The (artificial) neurons are the combination individual rows of the matrices which form the
linear mapping and the activation functions. In the case that the output of all neurons of
earlier layers affects the output of later layers and all neurons of the same layer are independent
of each other, this is called a fully-connected NN. A counter example would be a NN for which
the output of a neuron is set to zero, or equal to the value of another neuron of the same layer.
A possible NN, with the activation functions included in the layers, is shown in 2.1.

input layer hidden layer output layer
Figure 2.1 – A 2-layer fully connected NN (one hidden layer of 4 neurons and one output layer
with 2 neurons), and three inputs. The white circles are the artificial neurons.

Input

x1

x2

x3

Weights

w1

w2

w3

Neuron

Σ σ

output

. . .

Figure 2.2 – A sketch of the structure of an artificial neuron with three weighted inputs and an
activation function σ.

The number and the width of layers are essential for the performance of a NN. The more
or the wider layers a NN uses, the more complex features of the relationship between the
two data sets can be recognised in the transformation. This turns the choice of the number
and size of the layers into an important design choice. Another important point of design is
the choice of the activation function, for which many different possibilities exist. One of the
most common is the ReLU function, which is zero for negative arguments and the identity

11

2.1. Basics of Neural Networks

mapping for positive ones. With this choice, the first layer of the mentioned NN would have the
result z′ = max(0,W1x0 + y1), where the maximum-function is understood as being applied
elementwise.

The aim is to optimise the different affine transformations W in order to minimise the "distance"
between the approximation y′ and the training set y. In order to achieve this, one defines a loss
function which represents this "distance". The loss function usually includes also a regulator
proportional to the norm of the transformations, in order to disfavour overfitting [37]. The
regulator is an additional additive term proportional to the L1 or L2 norm of the Wi. This
favours therefore small values for their entries and simpler models. In ML, this regulator prevents
overfitting as it hinders the model from attempting to learn the background noise by learning a
too complicated model.

This loss function is then differentiated after the transformations, giving a gradient. In order to
do this computationally efficient using the chain rule, the gradient for each layer is implemented
within the layer. As a result, one computes the gradients by calling the layers in a sequence,
which is called backward pass or backpropagation [37] (the difference between backwards and
forward comes from the fact that the gradient for the last layer is evaluated first). Suppose the
value of the loss is L. The aim is to find the derivative of L after the weights of each linear
layer, in order to modify these.

∂L

∂wij
= ∂L

∂oj

∂oj
∂wij

. (2.2)

Here, j refers to the number of the layer and oj is the output of layer j. The second factor can
be derived from the structure of an artificial neuron:

∂oj
∂wij

= 1
∂wij

nj(xj−1) = 1
∂wij

σ

(∑
k

wkjxj−1,k + w0k

)
(2.3)

The derivative can be determined using the chain rule, as long as the derivative of the activation
function σ is known. The first factor in 2.2 can be only derived directly if j is the output layer
and depends on the actual form of the loss function, as oj is then an entry of the prediction y′.
If j is an hidden layer, the loss can be seen as a function of the nz who all receive oj:

∂L(oj)
∂oj

= ∂L(n1, n2, . . .)
∂oj

=
∑
z

(
∂L

∂nz

∂nz
∂oj

)
(2.4)

Now, the derivative with respect to oj can be calculated if the derivatives after the nz are known,
which is again the case for the output layer only. Therefore, one starts the backpropagation by
calculating the derivatives with respect to the parameters of the output layer, and uses them
for the gradient descent on these parameters. For the next layer, the gradient is now dependent
on the value of the derivative of the loss after the output times the derivative of the output
layer after the current layer, and so on. This can be performed efficiently if during the forward

12

2.2. Normalising Flows

propagation, the necessary information for the backward propagation, e.g. the derivatives after
input, are stored in order to save computational steps.

The last step is then a gradient descent, for which many different algorithms exist in order to
create a stable and fast training. The simplest of these is the stochastic gradient descent (SGD)
[40]. For each iteration i, the parameters w are adjusted as:

∆w = η∇Li(w) (2.5)

Here, the loss is calculated for a finite set of sampled points, so that the gradient descent step
is only an approximation of the correct step. This process is called stochastic because after a
finite amount of steps, a new sample is drawn. Refreshing the sample therefore compensates
for the finite size of the set. η is the learning rate and determines how strongly the gradient is
weighted.

After the training period is finished, the forward pass can be used to map any new vector x̃ of
the right dimensions in order to predict y′. If the correct y is known, the precision and loss
can be determined. In our application at hand, we would naively want to learn the distribution
function which is realised by f , in order to improve the integration of f .

In order to be of practical use, two conditions have to be met: Our first requirement is that it
should be possible to evaluate the mapping of the NN fast in comparison to the evaluation of f ,
which is true for sufficiently simple NNs. The second condition is related to the question how to
train the NN. Other than for common use cases like image labelling, it is necessary to evaluate
the integrand in order to determine the loss. This can be expensive. Therefore, training the
model itself ("forward training") by mapping the uniform sampled points through the model
and evaluating the function on the output is unfavourable.

Instead, one can precalculate a grid of function values with their respective arguments in the
target space. These arguments will be not necessarily uniformly distributed. Now, the training
is performed by applying the inverse mapping on the points in target space, providing the
Jacobian which is used together with the function value in the loss. This training strategy is
equivalent to the forward training, requires however the inversion of the model for sampling,
which would be non trivial when the NN is used in order to learn the integrator directly. This
training strategy is referred to as "backward training".

This is the reason why trying to learn the integrand directly with the NN is not favourable. We
will take another approach instead.

2.2 Normalising Flows

Although normalising flows are of great use in ML due to the common need for modelling prob-
abilistic functions, the concept is older and of much wider use than for what we are interested

13

2.3. Coupling cells

in. In general, normalizing flows are used to express a transformation on a sample of a fixed
distribution which returns a data vector:

x = T (u) u ∼ pu(u) (2.6)

Normalizing flows [23] are such a transformation which is also a diffeomorphism, i.e. invertible
with both the transformation and its inverse being differentiable. Thus, the distribution of x
becomes:

px(x) = pu(u)| det JT (u)|−1 u = T−1(x) (2.7)

where JT is the Jacobian of the transformation. and px is a probability density function. This
follows from integrating:∫

Ω
dupu(u) =

∫
T (Ω)

dxpu(T−1(x))|JT (T−1(x))|, (2.8)

as the integral over the probability density is preserved. The transformation can also carry
additional parameters. As a normalizing flow is a diffeomorphism, it is also composable, which
will be of crucial importance to us. The composition will lead to a general form of

px(x) = p0(u0)
N∏
i=1
| det JTi(ui−1)|−1 (2.9)

where ui = Ti−1(ui−1). We will use the normalizing flows in order to build the mapping from
the latent to the target space, as they fulfil our requirement of being invertible and preserve
the integration volume. We need to find the form of the normalizing flows which will define the
variable transformation, as well as their Jacobian, such that the loss is minimised. Complex
transformations via normalizing flows can be build as a composition of more simple ones. This
is mirroring the layer architecture we met earlier for NNs, but also the sequential structure of
the training process.

We saw now that it is desirable to express the transformation via normalizing flows. It is now
necessary to determine the normalizing flows in dependency of the integrand. This can be
achieved with machine learning.

2.3 Coupling cells

Let us now take a look at the algorithm behind neural importance sampling, following the
description from [26]. The central element of this are the coupling cells, which use the NN not
to learn the distribution but to learn parameters of the normalizing flows. This element was
developed for the NICE (Non-linear independent component analysis) algorithm [24, 25]. A
coupling cell takes the incoming vector x and splits it in two parts, xA and xB. This process is

14

2.3. Coupling cells

Masking

Coupling cell 1

m(xA)

C(xB;m(xA))

Coupling cell 2

. . .x

xA

xB

yA

yB

Coupling cell n

z

Π
J1 J2 Jn

Πn
i=1Ji

Figure 2.3 – Schematic structure of a coupling layer.

referred to as masking. A and B mark a collection of indices a and b. The coupling cell defines
a mapping; for the first set of indices, this is the identity: xA = yA. The vector yB will be
defined as the output of a set of separable, invertible functions Cb(νb, xb), one per element of
xB. These νb are crucial: They are determined by the NN m, which takes xA as input data.
The NN tries to learn the probability density of xb depending on the values of xA, but without
any knowledge of the other values in xB. Multiple coupling cells which transform different
dimensions form together a coupling layer. This process is also drawn schematically in Figure
2.3. As mentioned, we desire to have an invertible transformation. Therefore, we demand that
the coupling transform C is an invertible map. This gives:

yA = xA

yb1 = Cb1(m(xA),xb1)
...

y|B| = C |B|(m(xA),x|B|)

(2.10)

and its inverse

xA = yA

xB = CB −1(m(yA),yB).
(2.11)

Naively, this can result in a slowdown - as a part of the data is not mapped, it will be necessary
to use multiple coupling layers and train multiple instances of the neural network. However,

15

2.3.1. Number of coupling cells

this comes with a great advantage: The Jacobian of the coupling layer has an especially simple
structure:

1 0

0...

0 1

∂CB(νB,xB)
∂xA

∂Cb1 (νb1 ,xb1)
∂xb1

0
...

0 ∂CbB (νbB ,xbB)
∂xbB

(2.12)

This saves us from determining the complex derivatives of the NN, as they do not contribute
to the determinant of the Jacobian:

det J =
∏
b∈B

∂Cb(νb(yA), xb)
∂xb

(2.13)

Therefore, the determinant of the Jacobian of each of the coupling cells is efficient to evaluate
and can be passed on to the next coupling cell, in order to generate a Jacobian of the complete
transformation. This reduction of the computation cost for the determinant is the key feature
of the coupling cells. Without this, the algorithm would be very expensive for high dimensions.
Now, it is also possible to include complex coupling transforms and NN without suffering from
difficulties during the computation of the Jacobian. Looking at the definition in the last section,
we see that each of the Cb together with idA form a normalizing flow, as they are diffeomorph-
isms. They can be composed and define the change in the transformation from an uniform
one to the desired approximation of f . As we act on a hypercube, the derivatives of C can be
seen as probability distributions, whereas C itself is a cumulative probability distribution. The
reason for this is that C, in order to be invertible, has to be monotone, which is the property
of a cumulative distribution. The distribution itself, as seen earlier, transforms proportional to
the Jacobian.

2.3.1 Number of coupling cells

An important design choice is the number of coupling cells, which is dependent on the size of the
input data vector. In general, one wants the different coupling cells to mask the data points such
that every coordinate can influence the transformation of all other points. For a two-dimensional
vector entering, 2 cells would be therefore sufficient, and for D = 3, we will need nCC = 3. A
reasonable choice for the minimum number of needed coupling cells is nCC = 2 log2(D). The
argument behind this is the following. Each dimension is either transformed or not in each

16

2.3.2. Affine Coupling Transforms

Dimension 0 1 2 3 4 5 6 7
Transformations 0 0 0 0 1 1 1 1
Transformations 0 0 1 1 0 0 1 1
Transformations 0 1 0 1 0 1 0 1

Table 2.1 – Determination of the transformed dimensions for each coupling cell

coupling cell. Therefore, one expresses all numbers from 0 to D − 1 in binary representation.
In order to do so, log2(D) bits are required. Now one goes at the same time through the most
significant bit of all numbers; this bit is for each number either valued "1" or "0". By this, two
coupling cells are defined, one in which each dimension with a "1" in the most significant bit will
be transformed and the "0" valued dimension will be preserved, and the opposite, in order to
treat all dimensions equally. This can then be repeated for the second most significant bit, and
so on, giving 2 log2(D) cells, as the number of significant bits needed in order to express D is
log2(D). This guarantees that no set of 2 or more cells is always transformed or preserved always
together. A formal theorem stating that all correlations can be expressed with this number of
coupling cells can be found in [30].

Table 2.1 can be used to demonstrate this process for n = 8. Vertically, the bit representation
of each of the dimension labels is written, from the most significant to the least significant bit.
Now, the first digit for each dimension is taken, that is 0 until dimension 3, and 1 for the rest.
Therefore, the first coupling cell will transform {4, 5, 6, 7} in dependency of {0, 1, 2, 3}. The
second will do the inverse, that means, transform the first 4 dimensions. The next set of bits
will transform {2, 3, 6, 7} in dependency of the other dimensions, and so on. Therefore, six
coupling cells are needed.

One needs to define which form the coupling transforms CB should have. It is sufficient to
use relatively simple structures, as the nonlinear correlations between the uniform and the
target distributions are handled by the NN. Preferably, the coupling transforms should be easily
invertible. There are many options to choose from, with varying complexity and expressivity.

2.3.2 Affine Coupling Transforms

The most simple option is probably to define the transformation as [25]

yB = CB(xB,νB) = xB � esB + tB. (2.14)

The � marks elementwise multiplication. Both sB and tB are generated by m(xA). Here, the
parameters of the transformation are then:

νB = (tB, sB) ∈ R2,|B|. (2.15)

17

2.3.3. Piecewise-Linear Coupling Transforms

Figure 2.4 – A demonstration of the mapping for piecewise-linear cells in 1D. The orange dotted
line is the function to be learned, the blue line is the network prediction/the coupling transform.

2.3.3 Piecewise-Linear Coupling Transforms

An alternative is to use piecewise-linear coupling transformations [26]. Its derivative will be then
a piecewise-constant function, as can be seen in figure 2.4. In this setup, the NN determines
then ν(xA), which is the vector of the slopes of the piecewise-linear function, or the bin height
of its derivative. For this, each of the dimensions in B is divided into K bins. Therefore, the
NN m predicts a |B| ×K-matrix Q̂, which is then normalised to the matrix Q by applying the
softmax-function

s(z)j = ezj∑N
n=1 e

zn
, j = 1, . . . , N (2.16)

to each of the rows. Therefore, the derivative of the coupling transformation in the b-th dimen-
sion of xB is then defined as cb(xb) = Qbz/w, where w is the bin width and z is is the number
of the bin which contains the value of the argument xb.

The coupling transform itself becomes then

Cb(xb, Q) =
∫ xb

0
cb(t)dt = αQbk +

k−1∑
s=1

Qbs (2.17)

with α being the relative position of xb in the bin k, α = Kxb − bKxbc. The Jacobian of this
transformation does not require any additional calculation; it can be directly computed using
2.12:

det
(
∂C(xB, Q)
∂(xB)T

)
=
|B|∏
b=1

cb(xb) =
|B|∏
b=1

Qbx

w
(2.18)

with x again being the bin containing the value in the respective dimension.

More complex choices for the coupling functions will in consequence need more parameters being
determined by the NN.

18

2.3.4. Piecewise-Quadratic Coupling Transforms

Figure 2.5 – A demonstration of the mapping for piecewise-quadratic cells in 1D. The orange
dotted line is the function to be learned, the blue line is the network prediction/the coupling
transform.

2.3.4 Piecewise-Quadratic Coupling Transforms

The piecewise-linear coupling transforms suffer from the disadvantage that their bin width is
fixed. Each dimension is divided in K bins with equal width. Although it would be possible to
have K bins with different widths, this would still be fixed as NN only predicts the height of the
bins and not the relative position of the bin boundaries towards each other. As a consequence, a
higher number of bins is required in order to have a good resolution for sharp peaks. Including
the bin widths besides the bin heights as parameters predicted by the NN leads to quadratic
splines, which can greatly improve the adaption for a fixed number of bins, as can be seen by
comparing figures 2.4 and 2.5.

Using the same notation as before, the output of the NN are the |B| ×K-matrix Ŵ containing
the bin widths and the |B|× (K+ 1)-matrix V̂ containing the height of the spline knots. These
outputs also have to be normalised. For the bin widths, this can be done by the softmax
function. For the vertices, on the other hand, it has to be assured that the transformation
represented by the cumulative distribution function predicted by this network is limited to 1;
therefore the normalisation has to be modified to

Vi,j = exp (V̂i,j)∑K
k=1

exp (V̂i,k)+exp (V̂i,k+1)
2 Wi,k

(2.19)

Now, the derivative of the coupling transformation, which gives rise to the Jacobian, is not
piecewise constant but the piecewise linear interpolation between the (Wi,j, Vi,j)-tuples. This
linear interpolation exists as efficient implementations in many programming languages. The
values of these interpolations at xb have to be then multiplied for each transformed dimension.

19

2.3.4. Piecewise-Quadratic Coupling Transforms

The coupling transform itself is then a quadratic polynomial of the normalised output, dependent
on the position of transformed coordinate in the predicted bin with number z, α = (xb −∑z−1
k=1Wbk)/Wbz:

Cb(xb,W, V) = α2

2 (Vbz+1 − Vbz)Wbz + αVbzWbz +
z−1∑
k=1

Vbk − Vbk+1

2 Wbk (2.20)

With this theoretical basis at hand, one can implement the coupling cells and gain some insight
on their behaviour.

20

Chapter 3
Neural importance sampling in two

dimensions

As a first step, the piecewise-linear and piecewise-quadratic coupling cells are implemented for
the two-dimensional case, in order to evaluate their capabilities. The two-dimensional case
has the advantage of a simple visualisation, fast simulation and reduced effects of stacking of
coupling cells.

3.1 Implementation

Neural importance sampling is implemented in PyTorch [41], a modern Python package for
machine learning. This has the advantage of providing pre-implemented layers and optimizers
as well as automatised back-propagation. PyTorch code can also be executed on GPUs with
only minor adjustments, which allows a considerable speedup for vectorized computations, such
as NN evaluation.

The structure of the neural importance sampling package, sketched in figure 3.1, is the following:
the Manager class provides the basic initialisation and training functions. Both the imple-
mentation for piecewise-linear and quadratic coupling cells share the same BasicManager,
but have different implementations of the create_model function. During the execution of this
function, the model of the manager (inheriting of PyTorch’s Module class) is constructed as a
sequential model, consisting of coupling cell and masking layers. The number and form of these
layers are dependent on the arguments of the dimension of the model as well as the number of
coupling cells. Another argument is the structure of the rectangular neural network (see figure
3.2), of which each of the coupling cells will create an independent instance. Unless stated oth-
erwise, the rectangular NN has the following structure: it consists of sequences of a linear layer,
a ReLU layer and a batch normalisation layer, where all hidden linear layers have the same
number of nodes. Batch normalisation layers rescale and shift the output of the previous layers,

21

3.1. Implementation

Figure 3.1 – A sketch of the structure of the code for the case of 2 coupling cells. Black are
classes with their most important properties, blue are methods and the red arrows indicate their
relations.

which has been shown to greatly improve the stability and quality of NNs and is crucial for
good results with this algorithm [42]. A more detailed overview of the most important classes
and functions can be found in the appendix.

During the forward pass, the masking layers reshuffle the dimensions of the input based on the
strategy of section 2.3.1. This is done for a whole batch (a collection of sampled n-dimensional
random points) at once. The coupling cell then evaluates the NN on xA and performs the
transformation described earlier, whilst calculating the Jacobian at the same time. During the
training, the forward pass is performed in a loop. The function to be learned is executed with
the transformed batch as argument. From this, an estimate of the variance when using the
model as a sampler is calculated. Following 1.11, we want to calculate the variance of the
product of the function value and the value of the Jacobian at this point and define this as the
loss. This loss is however only available as an estimate. Ideally, we would calculate the variance
over the sample as

L′ =
∫

dxg(x)
(
f(x)
g(x)

)2

−
(∫

dxg(x)f(x)
g(x)

)2

=
∫

dxf(x)2

g(x) − I(f)2 (3.1)

However, during runtime, the integral value is only known in approximation, as the batch size
is limited. The integral is however independent of the parameters of the normalizing flows.

22

3.1. Implementation

NNL

Input b-norm

W1 NNW

b1 NNW

+ ReLU b-norm . . .

Wn−1 NNW

bn−1 NNW

+ ReLU b-norm

Wn #bins

bn #bins

+ Output

Figure 3.2 – The structure of the rectangular neural network used for the coupling cells. Each
block refers to one of the repeating units. The number of these units is meant with the length
of the NN. The width refers to the shape of the linear transformation. The shape of the last
linear transformation is set by the number of parameters required by the coupling cell. The red
line symbolises the flow of calculation.

Therefore, it is a reasonable choice to take for the loss instead

L =
∫

dx
(
f(x)2

g(x)

)
(3.2)

Now, changing again the perspective back to the variable transformation picture by defining
g(x) =

(
∂h
∂x

(x, θ)
)−1

= J−1 and integrating over y = h(x, θ) gives the definition of the loss
function:

L = EY∼N ({x})|xi∈Ω(f(Y)J)2, (3.3)

where N denotes the effect of the coupling cell transformations. This is the loss of the forward
training, which is used in the following. The motivation behind this is to examine the trained
model directly, whereas runtime is not the main focus of this investigation as it largely depends
on the used hardware and the implementation and form of the integrand.

After the loss has been calculated, PyTorch’s Autograd implementation can automatically
calculate the gradient and by this optimise the parameters of the NNs. This is done, if not
otherwise stated, using PyTorch’s implementation of the Adamax gradient descent [43]. For
every step (epoch), a new batch of random points in the hypercube is sampled. Every time the
loss reaches a new absolute minimum, the corresponding model is preserved. This is continued
until a breaking condition is met.

Figure 3.3 shows two typical behaviours of the loss during the training. Ideally, the loss falls
evenly for most of the training time, until it saturates and stays virtually constant. If on the
other hand the optimizer is not well calibrated on the training architecture and the integrand,
the loss shows a greater variance. It reduces faster but does not necessarily reach the same
optimum. However, after reaching a minimum it might increase again. Due to this behaviour

23

3.1. Implementation

Figure 3.3 – Stable (left) and instable (right) behaviour of the loss during the training

and due to the computational cost of updating the model, it is not desirable to train during
the whole integration but only for a limited time in the beginning, until an optimal model is
reached. In order to account for this, early stopping regularization [44] is used. This means
that the training is stopped when the loss increases for multiple subsequent epochs or exceeds
a certain threshold. The best model during the training can be then used. Additional criteria
for stopping include a test if the minimum loss has not or not significantly been reduced for too
many epochs and eventually ending the training if it exceeded a certain runtime.

With this setup, the next step is to determine the right values of the hyperparamters. These
include the length and width of the rectangular NN. On the side of the optimizer, there are
the learning rate which determines how strong the gradient descent is, as well the weight decay,
which is a penalty for the norm of the linear layers and prevents overfitting. As it limits the
norm of the linear transforms, it gives also additional stability to the training. Figure 3.3 shows
the effect of too small values for the weight decay on the right side. Apart from this, there are
the batch size and the number of bins of both coupling cells. These hyperparameters are in
general dependent on the function which one aims to learn; they can be however be also limited
by hardware, as it is with the batch size, which is limited by the memory of the used device.

These hyperparameters are costly to find. In general, there is no analytic way to predict
the optimal value, and it has to be determined experimentally. For this, a range for each of
the hyperparameters is defined and fixed combinations of random parameters are tested. The
optimal configuration is then used.

In the following, the performance for the optimal configuration after hyperparameter optim-
isation is compared for both the piecewise-linear and the piecewise-quadratic coupling cells.
The motivation behind this is to see which of both can achieve in its optimal configuration the
greater improvement of the variance.

The reason that affine coupling cells are not investigated deeper lies in their specific behaviour.
From the definition of the affine coupling cells, it becomes clear that they map into the full Rn,
other than the piecewise-linear and piecewise-quadratic coupling cells. This requires mapping
their output back into the hypercube, which causes a bad initialisation and in return makes

24

3.1. Implementation

Figure 3.4 – The untrained mapping of the affine (left) and piecewise-linear (right) coupling
cell, for a single cell in 2 dimensions. The peaked behaviour of the untrained affine coupling
cells reduces the ability to correctly train features.

Figure 3.5 – The mapping of the affine coupling cell after training on a gaussian. A wrong local
minimum of the loss was found, referring to a vanishing Jacobian.

training harder. An example of disadvantageous initialisation can be seen in 3.4, which also
shows that other coupling transforms do suffer less from this. For this figure, the transformed
dimension x1 was, after the transformation via the coupling cell happened, mapped back to
[0,1] using the arctangent. The arctangent is very steep around 0, resulting in a low likelihood
of sampling into small values of the initialised model. On the other hand, it converges to 1
for x → ∞, mapping many sampled values in a small area close to 1. Additionally, wrong
convergence can also be a result of the necessity of including the Jacobian of the mapping via
the arctangent, of which the derivative converges to zero for x → ∞. Here again, the training
could lead to an increasing affine factor which minimises the Jacobian and by this the loss, but
does not improve the integral as the mapping for all dimensions will be ∼ 1. An example for

25

3.2. Comparison of piecewise-linear and piecewise quadratic coupling cells

such a training result is shown in figure 3.5. The other two presented coupling cells do not suffer
from this issues and are therefore more promising.

3.2 Comparison of piecewise-linear and piecewise
quadratic coupling cells

Both coupling cells were optimised by two independent random hyperparameter searches nar-
rowing down the optimal set of hyperparameters. The training was limited to 1000 epochs or
15 min of runtime, which was however never reached during the hyperparameter optimisation.
As it was observed that during the training, both cells usually reached a minimal loss before
diverging in loss again, the training was stopped when the loss exceeded 175% of the minimal
loss observed in the training. The function which was learned was

f(x) = e((x−0.75)2/0.22) + e((x−0.25)2/0.22) (3.4)

This function has two gaussian peaks in the the two-dimensional plane at different positions,
and is nicknamed the "camel"-function. This function is of interest as it can test whether the
coupling cells are able to learn non-central peaks along a diagonal.

Figure 3.6 – Plot of the "camel" function

A second test function is used to determine how the training deals with regions of low value
which are enclosed in regions of high values.

f(x) = min(1, e−
(|x−0.5|−0.3)2

0.12 + e−
(x0−x1)2

0.12) (3.5)

The ceiling value of one is not a necessity for the success of the training and is used for cosmetic
reasons of the the plot.

26

3.2.1. Performance of the piecewise-linear coupling cell

Figure 3.7 – Plot of the slashed circle function

It is important to note that the results given below are subject to statistical variations. The
training with NN is not deterministic but stochastic; if one trained twice with the same hy-
perparameters and the same data, it would not necessarily lead to the same parameters. The
mapping by the NN after the training is however deterministic as it can be represented by a
function.

3.2.1 Performance of the piecewise-linear coupling cell

The optimal configuration for the piecewise-linear case was reached with 2 coupling cells with
19 bins each. Each coupling cell had a rectangular NN with width 13 and length 3, as well
as a learning rate of 9.4× 10−3 and weight decay of 7.8× 10−4. The batch size was 76000.
The data reported in table 3.1 is the average over 10 runs. The minimal variance is the best
variance reached during the training, which is usually reached shortly before the training gets
terminated due to early stopping regularisation. The relative minimal variance is the ratio
between the minimal and the initial variance. The speedup refers to the reduction of function
evaluations necessary to reach a certain standard deviation of integration result. Following
chapter 1, if one would use the trained model for sampling instead of uniform sampling, the
number of required function evaluations would reduce by the inverse of the relative minimal
variance. The reported time depends on the function which is evaluated and refers to the time
needed to reach the minimal variance.

Minimal variance Rel. minimal variance Speedup # fct evaluations Execution time/s
Double Gaussian, best 4.07± 0.38× 10−3 4.84 ± 0.48 × 10−2 2.06± 0.21× 101 9.53± 0.57× 106 178± 36
Double Gaussian, 2nd best 5.01± 0.57× 10−3 6.26 ± 0.72 × 10−2 1.60± 0.18× 101 4.80± 0.72× 106 77± 21
Slashed circle, best 6.42± 0.36× 10−3 1.312± 0.076× 10−1 7.69± 0.45 9.09± 0.95× 106 105± 15

Table 3.1 – Performance of the piecewise-linear coupling cell setups.

A similar result was also reached with a different configuration (NN width 14, NN length 7, 19
bins, learning rate 7.0× 10−3, weight decay 7.2× 10−4, batch size 20000), but reduced training
time due to the smaller batch size and higher learning rate.

27

3.2.2. Performance of the piecewise-quadratic coupling cell

Figure 3.8 – The output of the piecewise-linear coupling cell after hyperparameter optimisation
in the best (left) and second best (right) configuration

This second best configuration had a much higher learning rate and reached the minimal loss
earlier and evaluating the integrand thus less often, at the cost of not reaching the full variance
reduction.

Although the level of loss reduction strongly varies between the configurations and runs, even
when doing a wide scan of different configurations, 35% of the runs reduce the variance down to
10% of the initial value and 90% reach reduction to 50% of the initial variance before diverging
again. Less than 2% of the configurations did not succeed in reducing the loss. The worst runs
usually suffered from a small number of bins (<7), and were unable to reflect the structure of
the integrand.

For the slashed circle, a considerable improvement can be reached as well as can be seen in
table 3.1. However, in the regions where the area between the boundaries and non-zero values
is small, the regions where the function is zero is not clearly recognised. The success of the
training is highly dependent of the number of bins.

3.2.2 Performance of the piecewise-quadratic coupling cell

The optimal configuration observed in the hyperparameter optimisation had 3 NN layers of
width 16, 10 bins in each coupling cell a learning rate of 0.0149, a weight decay of 3.2× 10−4

and a batch size of 58,000.

Minimal variance Rel. minimal variance Speedup # fct evaluations Execution time/s
Double Gaussian, best 2.62± 0.32× 10−3 3.24 ± 0.92 × 10−2 3.2 ± 1.0 × 101 6.6 ± 1.2 × 106 180± 99
Double Gaussian, 2nd best 4.6 ± 2.1 × 10−3 5.6 ± 2.8 × 10−2 1.78± 0.89× 101 5.1 ± 2.1 × 106 51± 34
Slashed circle, best 3.20± 0.73× 10−3 6.52 ± 0.73 × 10−1 1.53± 0.17× 101 1.03± 0.28× 106 210± 55

Table 3.2 – Performance of the piecewise-quadratic coupling cell setups.

28

3.2.2. Performance of the piecewise-quadratic coupling cell

Figure 3.9 – The output of the piecewise-linear coupling cell for the slashed circle

Figure 3.10 – The output of the piecewise-quadratic coupling cell in the optimal configuration
(left) and the second best (right)

An alternative, slightly smaller improvement was reached again with a model (NN width 11, NN
length 3, 4 bins, learning rate 8.9× 10−3, weight decay 4.3× 10−4, batch size 26000) which trains
considerably faster and reached its optimum after shorter time due to the simpler structure and
smaller batches. However, this configuration suffers due to this from a higher variance of the
quality of the results, as can be seen in table 3.2

Although again the level of loss reduction strongly varies between the configurations and runs,
even when doing a wide scan of different configurations, half of the runs reduce the variance
down to 10% of the initial value and 95% reach reduction to 50% of the initial variance before
diverging again. Less than 2% of the configurations did not succeed in reducing the loss.

29

3.2.2. Performance of the piecewise-quadratic coupling cell

For the slashed circle, a great improvement is noted. Here, the zero-valued regions around the
boundaries is well recognised. The region inside the circle is however still not very crisp.

Figure 3.11 – The output of the piecewise-quadratic coupling cell for the slashed circle

Figure 3.12 – Overview of the minimal relative variance achieved of the different setups of the
piecewise-quadratic coupling cells versus the hyperparameters of the setup. From left to right:
learning rate, number of bins, width of the NN, length of the NN.

The examples and the overview of the performance versus the hyperparamters in figure 3.12
make clear that the number of bins is not an decisive hyperparameter. It is only required to be
high enough to reflect the structure of the integrand for the piecewise-linear cells, but beyond
this constraint, the number of bins does not affect the training outcome in general. The value
of the learning rate is the single most important hyperparameter. Indeed, values much greater
than 3× 10−2 lead to a very instable training process during which no great improvement can
happen, whereas values much smaller than 1× 10−4 do not succeed in improving the model
sufficiently in order to see improvement, as the statistical error between the batches becomes
greater than the influence of the training. As figure 3.13 shows, the range of values of the
learning rate for which an improvement is achieved increases with the batch size, and bigger
batches achieve a better training. Whereas figure 3.12 shows apart from this no clear correlation
between the performance and the number of bins or the width of the NN, a certain preference
for short NN appears. Very deep NN can lead to unstable training due the high number of

30

3.2.3. Analysis of the behaviour of piecewise-quadratic coupling cells

Figure 3.13 – Overview of the minimal relative variance achieved in relation to the batch size
and the learning rate.

activation functions involved. In general, however, the variance between the runs is of the same
order of magnitude as the influence of the hyperparamters.

3.2.3 Analysis of the behaviour of piecewise-quadratic coupling
cells

The piecewise-quadratic coupling cells reach in general a lower minimal loss before diverging
in comparison to the piecewise-linear coupling cells, resulting in a greatly increased speedup.
They are also more tolerant of disadvantageous choices of the hyperparameters, in the sense
that it is less likely that the training immediately diverges. They are also much more tolerant
to the number of bins due to the increased expressivity. The lower number of bins needed also
compensates the increased computational cost of the quadratic bins. In this example, half the
number of bins were needed, which means that both the quadratic and the linear bins tried to
determine the same number of parameters.

Rel. minimal variance PWLin # fct. eval. PWLin Rel. minimal variance PWQuad # fct. eval. PWQuad
Double Gaussian 4.84 ± 0.48 × 10−2 9.53± 0.57× 106 2.62± 0.32× 10−3 6.6 ± 1.2 × 106

Slashed circle 1.312± 0.076× 10−1 9.09± 0.95× 106 6.52± 0.73× 10−2 1.03± 0.38× 107

Table 3.3 – Comparison of the performance of the piecewise-linear and piecewise quadratic
coupling cell.

The difference between the training of both coupling cells becomes more clear looking at the
evolution of the mapping during the training process. Figure 3.14 and 3.15 show that the
quadratic coupling cells reach earlier an already reasonable adaption and suffer less from linear
artefacts originating from the bin boundaries. This is especially relevant when the cost of

31

3.2.3. Analysis of the behaviour of piecewise-quadratic coupling cells

Figure 3.14 – Time evolution of the mapping for the gaussian double peak for piecewise-linear
(top) and piecewise-quadratic (bottom) coupling cells.

Figure 3.15 – Time evolution of the mapping for the slashed circle for piecewise-linear (top) and
piecewise-quadratic (bottom) coupling cells.

evaluating functions rises and the maximal improvement is less important than the improvement
over function evaluations. From the evolution, it becomes also clear that both coupling cells
learn all features of the functions at the same time, instead of first learning for example the
diagonal of the slashed circle and then improving upon including the circle.

This makes clear that the piecewise-quadratic coupling cells are an improvement over the linear
ones, which is why we will focus on their application from now on.

An output of the bin boundaries of the trained model gives insight into the way the piecewise-
quadratic coupling cells adjust to the structure of the function learned. A first observation is
the continuity of the boundary borders, which is necessity in order to preserve differentiability.

32

3.2.3. Analysis of the behaviour of piecewise-quadratic coupling cells

Figure 3.16 – Bins of the first (left) and second (right) coupling cell of the optimal configuration.
Top: untrained, bottom: trained model. The axis parallel to the lines refers to the non-
transformed dimension (in the right image, this dimension was transformed by the first coupling
cell already), the position of the lines to the right bin boundary. The colour encodes the value
of the cumulative distribution function at the right bin boundary, e.g. the value to which the
input dimension will be transformed at the bin boundary.

In a next step, one can focus on the second coupling layer. For both peaks, the bin size is
increased, whereas the values of the CDF are only slowly increasing over the boundaries close
to the peak. However, for other examples one would see only small changes of bin sizes and a
stronger adjustment via the values of the vertices. This becomes more clear when taking into
account how the coupling cell maps the input into the output. Two neighbouring lines with
similar values of the CDF means that input which lies in this bin is mapped to the same output
value; in this example for the first cell, all input vectors with 0.1 < x0 < 0.3 and 0.1 < x1 < 0.5
are mapped to y1 ∼ 0.25, which increases the likelihood of such configurations and causes a
peak. The opposite effect comes into play for small bins with a rapid change of the cumulative
value, as for the second coupling cell. There, for the upper peak, the neighbouring minimum of
the distribution function is realised by small, rapidly increasing bins.

This is indeed also what happens for the piecewise-linear coupling cell, however, here the ad-
justment is only done via the bin heights. This enforces a constant resolution and reduces by
this how easily the model can adopt to more complex structures.

33

3.2.3. Analysis of the behaviour of piecewise-quadratic coupling cells

Cumulative distribution function of the first (left) and second (right) coupling cell of the optimal
configuration. The axes refer to the dimensions of the input. The colour encodes the value of
the cumulative distribution function.

Looking at the plot of the whole CDF without the bins, one can see the shift of mapping
probabilities along the transformed dimension. For the second coupling cell, the both peaks are
especially clearly realised, whereas for the first cell, the are visible in a less clear resolution. It
is to be expected that the first cell gives a less clear resolution as its output is alternated by
the second cell. In some cases, a splitting of peaks between the coupling cells can be observed,
such that each of the cells has a clear resolution of one of the peaks.

Figure 3.17 – Left: the colour-encoded 2D plane. Each point got encoded in the RGB-scheme
as (x0, x1, 0.5). Middle: the same set of points after transformation with a model trained on the
double gaussian, but with the colour-encoding of their original position. Right: the same, but
mapped with a model trained on the slashed circle.

Similar to this, figure 3.17 shows how the mapping of each individual point is performed. In
accordance to what has been shown before, the transformation is continuous and mainly shifts
points in their immediate surroundings instead of shifting them by large distances. For the
double peak, the main contributions originates in density shifts along x1, as expected from
the CDF. For the slashed circle, the translation patterns of the individual points is richer.
The circular structure is created translating points out of the top left and bottom right corner

34

3.3. Comparison to the VEGAS algorithm

towards the other two corners, whereas the minima inside the circle are generated by moving
the points there on the slash and the circle maxima. This shows the high expressiveness of this
approach.

3.3 Comparison to the VEGAS algorithm

The vegas Python-package [45] is an implementation of original VEGAS algorithm described
earlier. In the following, its performance in comparison to the piecewise quadratic coupling
cells is demonstrated. The adaptive grid of this module was trained on the respective function,
without the usage of stratified sampling. The training was done with 10000 evaluations per
epoch until the variance reduction per epoch was minimal.

For the first example, a central gaussian is trained using the best configuration of the piecewise-
quadratic coupling cells before. The comparison of the performance is presented in table 3.4.

Minimal variance Rel. minimal variance Speedup # fct evaluations Execution time/s
VEGAS 2.26± 0.28× 10−5 3.71 ± 0.28 × 10−4 2.69± 0.29× 103 4.31± 0.15× 106 52.4± 5.3
NIS 1.72± 0.23× 10−3 2.82 ± 0.13 × 10−2 1.12± 0.15× 101 3.32± 0.25× 106 45.2± 9.3

Table 3.4 – Performance for the two integration strategies for the single gaussian peak.

Figure 3.18 – The adaptive grid of VEGAS at the end of the training for the gaussian peak.

As expected, the VEGAS algorithm is very successful at learning this structure. It reached a
considerably higher accuracy. Although the execution time was higher, this was mainly caused
by it being executed on the CPU instead of the GPU, as the number of function evaluations
used is comparable. This shows that for very simple, low-dimensional integrals, this algorithm
is superior due to its higher stability, simpler structure and high optimisation.

The second example is considerable more challenging. Here, we use again the gaussian double
peak, e.g. the camel function. Other than before, correlations exist now between the integration
axes, which greatly reduces the performance of VEGAS in comparison to neural importance
sampling, as can be seen in table 3.5.

35

3.3. Comparison to the VEGAS algorithm

Minimal variance Rel. minimal variance Speedup # fct evaluations Execution time/s
VEGAS 6.38± 0.25× 10−3 7.51 ± 0.30 × 10−1 1.332± 0.041 2.11± 0.42× 106 37.4± 3.4
NIS 2.62± 0.32× 10−3 3.24 ± 0.92 × 10−2 3.2 ± 1.0 × 101 6.6 ± 1.2 × 106 180 ± 99

Table 3.5 – Performance for the two integration strategies for the double gaussian peak.

Figure 3.19 – The adaptive grid of the VEGAS algorithm at the end of the training for the
gaussian double peak. Note that instead of two peaks, four were learned.

Figure 3.20 – The output of the vegas grid for the slashed circle

As expected, VEGAS detects four instead of two peaks, as the adaption of the grid is done
for both axes independently. As a result, the relative loss is considerably higher than for the
piecewise-quadratic coupling cells seen in the last section. Furthermore, VEGAS had a higher
runtime and consumed more function evaluations.

The situation becomes even more clear for the slashed circle function in figure 3.20.

VEGAS is unable to represent the zero-valued areas inside the circle as it sums up the function
values along the non-transformed axis. The only adaption possible is therefore a finer grid in
the area of the circle than outside of it, reaching only a minimal improvement down to about
80% of the original variance.

This shows that neural importance sampling can indeed outperform the widely adopted VEGAS
algorithm both in variance reduction and runtime. This first success motivates a more in depth
exploration of neural importance sampling.

36

Chapter 4
Investigation of the quadratic-coupling

cells in higher dimensions

After having investigated the behaviour in 2 dimensions, the next natural question is how
neural importance sampling behaves in higher dimensions, which are of course of great interest
for high energy physics. In order to be able to give a clear statement about the performance of
neural importance sampling, a wide range of dimensions and gaussian multi-peak functions is
investigated. As the variance reduction depends on the value of the hyperparameters and as it
is not clear whether there is a optimal setup for all integrands, a hyperparameter optimisation
has to be performed for each different integrand.

4.1 Setup

Contrary to earlier setups, several modifications have been performed on the algorithm. In order
to reach high batch sizes also for high-dimensional problems, minibatches of size 20,000 are used,
which helps dealing with limited memory. The gradients are agglomerated during each epoch
for the required number of minibatches to reach the full batch size. Additionally, the breaking
condition is now that every 25 epochs, it is tested if the minimum loss has decreased by at least
a factor of 0.999 (this deals with situations where only minimal improvement is reached). Apart
from this, if the loss is increasing for 5 epochs in a row, the training is stopped as well (early
stopping regularization). As a last breaking condition is the requirement that the training is
not allowed to last for more than 8 minutes, a time after which the point of minimal loss was
nearly always reached in earlier experimental runs.

Additional modifications include the modified masking described earlier, following the i-flow
library [30] in order to be able to use the minimum number of coupling cells. Another modific-
ation stabilises the initialisation of the coupling cells. For higher dimensions the volume of the
gaussian peaks in comparison to the volume which is virtually zero becomes very small. For

37

4.1. Setup

2 dimensions and the single gaussian peak with width 0.25, the volume inside the hypercube
with a function value greater than 0.01 is ∼ 0.85. For 8 dimensions, this is reduced to ∼ 0.029.
Due to this, the chance that a point in the batch lies in this region is largely reduced and the
quasi-uniform initialisation does not guarantee a successful training. Therefore, a survey phase
(the so called "preburner") is used to compensate this. This is done by training in the begin-
ning with a modified loss of the function evaluated on the points of the latent space (which is
uniformly distributed) times the Jacobian of the transformation. This loss is then, similiar to
equation 3.3

L = Ex∈U(Ω)(f(x)J)2, (4.1)

This ensures that the Jacobian is proportional to the inverse of the training function. When
this modified loss is decreased considerably (here, the boundary was set for the modified loss
to be 15% of the initial loss. If this can be not achieved, the survey phase is stopped after 100
iterations), the normal training started. The training then starts with a mapping which has a
much higher likelihood to recognise the to-be-learned features.

The advantage of this approach is that uniform sampling in the target space is guaranteed for
the start of the training, making it less likely that disadvantageous gradient descent steps lead
to a model which only samples scarcely into the important regions of the target space. The
downside is that during the preburn time, the wrong loss is optimised, which is the reason why
it is desirable that it is kept as short as possible. In preliminary runs, this modification was
crucial to ensure a successful training.

The performance of the algorithm is tested in 2, 4, 8, 16 and 32 dimensions. For each of
this dimensions, runs are performed with NN of length 3 and 8 (minimum one hidden layer is
required to be able to learn more complex structures; lengths far beyond 10 tend to lead to
instable training) and width 6, 11 and 16.

The training functions are a single, centred gaussian peak; two gaussian peaks on a hyperdi-
agonal; four gaussian peaks (at [0.25 . . . 0.25],[0.75 . . . 0.25],[0.25 . . . 0.75] and [0.75 . . . 0.75]) and
similarly eight gaussian peaks on positions [a, . . . , a, b, . . . , b, c . . . , c]. The runs are performed
with peak widths of 0.15, 0.25 and 0.35. This is intended to test how well the algorithms can
deal with small peaks on the one hand and wide, touching peaks on the other hand. These peaks
are motivated by the enhancement of propagators in particle physics. However, they allow us
to investigate the behaviour of neural importance sampling without having to apply a mapping
into the phase space.

The remaining hyperparameters are determined via hyperparameter optimisation by comparing
80 runs per configuration. The boundaries of the hyperparameters are determined by hardware
restrictions (especially the batchsize) on the one hand and the usual positions of optimal values
in earlier investigations on the other hand. The batch size will be chosen in multiples of the
minibatch size in the range of 1 to 4, the number of bins in the range of 4 (which is the minimum

38

4.2. Results

needed to spline two gaussian peaks) to 16, the learning rate in a range from 5e-5 to 2e-2 and
the weight decay in a range from 1e-6 to 5e-4. The number of coupling cells is also used as
a hyperparameter, giving the choice between the minimum amount of coupling cells needed
to learn the distribution in all dimensions, 2dlog2De, and additionally for the same amount
of coupling cells added which will each transform a single dimension. The reasoning behind
this is to test if additional transformations on certain dimensions after the adjustment of all
dimensions can lead to an additional improvement.

After hyperparameter optimisation, the ideal configuration is executed 6 times. The documented
values are cumulants over these runs.

The same functions are also used to perform importance sampling with the VEGAS algorithm
using the vegas python package, for each configuration in 12 runs. The VEGAS algorithm is
executed with 25,000 evaluations per iteration until its variance improvement after 5 iterations
becomes less than 1%. On each axis, 40 grid points are given, such that multiple peaks can be
detected easily.

4.2 Results

In the tables in the appendix, the original variance of the test function is given, as well as
for both the present algorithm as well as the VEGAS algorithm the variance reduction factor
(VRF, the variance using importance sampling divided by the variance using flat sampling) and
the number of function evaluations used to achieve this (this does not include the number of
evaluations during hyperparameter optimisation for neural importance sampling or evaluations
after the optimum was reached). Additionally, the number of standard deviations between the
results of both algorithms are given in order to assure their agreement, as well as the ratios of
both VRFs, where a ratio greater than 1 means that the VEGAS algorithm reached a superior
result, and a ratio smaller than 1 is a sign of a better improvement with neural importance
sampling. The last column contains the estimated relative speedup between neural importance
sampling and the VEGAS algorithm, derived from the mean relative variance improvement.

In Table 6.7, one can see the outcome for the run in 2 dimensions. The 8-peak case has been
omitted as with the placement outlined above, only 4 peaks are possible in two dimensions. In
2 dimensions, the quadratic coupling cells in general perform worse than the VEGAS algorithm
for the single peak and the 4-peak case. An improvement can be only seen for 2-peak case, where
the improvement is greater for wider peaks. VEGAS can perform well in the single and 4-peak
case as here the peaks are distributed fully symmetrical, which explains its good performance
in this case. This shows that for lower dimensions, neural importance sampling is not in general
superior, but can compensate the difficulties of the VEGAS algorithm.

39

4.2. Results

For the run in 4 dimensions in Table 6.8, VEGAS is superior for the single peak. However,
for multiple peaks the quadratic coupling cells manage to achieve results of similar quality,
however with a higher variance of the outcome. This could be connected to the strategy of
hyperparameter optimisation, which only tries to improve the loss and not the consistency of
the achieved improvement. Runs with many or wide peaks tend to give less improvement. This
is a sign that neural importance sampling does perform better for sharper features.

Again in Table 6.9 for 8 dimensions, neural importance sampling gives equal or superior results
to the VEGAS approach for test functions with more than one gaussian peak, additionally now
with a more comparable variance of the quality. The superiority of neural importance sampling
is not caused by a lack of improvements from the VEGAS sampling, but they can instead reach
better results as it can deal with the correlations between the axes. The improvements are
however smaller than for the 4 dimensional case. It is important to mention that the required
number of function evaluations is in general of the same order of magnitude for the VEGAS
algorithm and neural importance sampling. This shows that the improvement comes only with
low additional computational cost if used for slow integrands, which is the case for the desired
application on cross sections.

In the case of 16 dimensions in Table 6.10, multiple cases occur where the VEGAS algorithm
can reach no improvement at all. This is related to the fact that the phantom peaks which
occur for every additional dimension introduce additional sources of variance, until no improve-
ment can be achieved. As further investigation showed, this can be not compensated by an
increase in evaluations during each iteration. Only a considerable higher number of iterations
can improve the performance of VEGAS slightly, yet not beyond the performance of neural im-
portance sampling and only at the cost of many additional function evaluations. The quadratic
coupling cell can reach great improvements especially for small peak widths and many-peak
cases. However, the VEGAS algorithm is still superior for flat single-peaks. With increasing
dimensionality, the variance of the improvement of neural importance sampling increases. The
reason for this is the ever increasing empty volume, which is not the case for physical integrands.
This increases the possible gain of the variance reduction, but also reduces the stability of the
training as the sampling density of the batch decreases and statistical errors become more and
more important. Especially for higher dimensions, the batch size is limited due to memory
issues, increasing this problem.

This is the reason why for 32 dimension, narrow peaks were excluded. The problems of VEGAS
increase whereas neural importance sampling can now also reach superior results for the single
peak case.

As a result, it seems like the VEGAS algorithm is preferable for flat, low-dimensional prob-
lems without correlations along the axis, whereas neural importance sampling performs better
for highdimensional problems with multiple strong peaks. A problem that remains is the high
variance of the quality of the result of neural importance sampling. Especially for higher dimen-

40

4.2. Results

Figure 4.1 – The absolute speedup of neural importance sampling in dependency of the number
of peaks and dimensions. The colour encodes the logarithm of the speedup. Left: peak width
0.15, in the middle 0.25 and to the right 0.35. White fields represent non-existing data points.

Figure 4.2 – The relative speedup between neural importance sampling and VEGAS in depend-
ency of the number of peaks and dimensions. The colour encodes the logarithm of the relative
speedup. Left: peak width 0.15, in the middle 0.25 and to the right 0.35. White fields represent
non-existing data points.

sional cases, the uncertainty is often of the order of the improvement or one magnitude smaller.
Next to the zero-volume, this might be related to the strategy of hyperparameter optimisation,
which chooses configurations with good maximum improvement without knowing the average
improvement reached by the respective set of hyperparameters.

An overview over the relative performance can be gained by visualising the absolute speedup of
neural importance sampling and the relative speedup in comparison to VEGAS in dependency
of the dimension and number of peaks in figure 4.2 and 4.1. Again, for cases where the VEGAS
algorithm could reach no improvement, the absolute speedup was taken. In the figures, one
can see clearly that VEGAS performs comparatively well for single peaks, as expected. Addi-
tionally, for four peaks in 2 dimensions, neural importance sampling has no advantage too, as
this configuration is symmetrical in both dimensions. However, for increasing dimensions and
number of peaks, neural importance sampling is eventually superior. The absolute speedup is
most of the time of the same order, except for smaller improvements for wide peaks in dimension
8 and greater improvements for very high dimensional cases and small peaks, which can be also
a result of the scarce distribution of points.

41

4.2. Results

Figure 4.3 – The trained model for the 4D double gaussian peak in multiple projections.

One major reason for the fact that the improvement is approximately always of the same order
is that the most important adaption is performed by the first coupling cell only. Looking at the
4D gaussian double peak in figure 4.3, one can see that the projection in the x0 − x1-plane is
of the same quality as seen before in 2 dimensions. Looking instead into the x0 − x2-plane, the
adaption is much worse; indeed, along the x2 axis, only a small change of likelihood of sampling
is observed, whereas the peaks are still visible along the x0 axis. On the x2 − x3-plane, almost
no adaption happens. The reason for this is that, following the masking outlined earlier, the
last two coupling cells learn (x0, x2) for fixed (x1, x3) and vice versa. The last coupling cells are
easier to learn as their effect is not altered by later transformations. However, the preference
of learning the correlation between x0 and x1 over the others seems to be an effect arising in
the training only, as all dimensions are transformed, but x0 and x1, considerably stronger. The
optimizer seems to favour learning one correlation between the variables instead of all at once,
leading to a behaviour similiar to 2 dimensions.

This is however not a general behaviour of neural importance sampling. The training does not
try to improve all correlations but tries to reduce the variance, which can be in this case be
achieved the easiest by focusing on the double peak in the x0 − x1 plane. Another example
shows that in general all features can be learned. Taking the function

f(x) = exp
(

(x0 − 0.5)2 + (x1 − 0.5)2

0.252

)

+ exp
(

(x2 − 0.25)2 + (x3 − 0.25)2

0.252

)
+ exp

(
(x2 − 0.75)2 + (x3 − 0.75)2

0.252

)
,

(4.2)

in words, a simple gaussian peak for the first two and a double peak for the second two dimen-
sions. Now, the training cannot achieve the same improvement for all correlations along the axes
and therefore does indeed succeed at learning different structures along different dimensions, as
can be seen in figure 4.4.

42

4.3. Analysis of the impact of hyperparameters

Figure 4.4 – The trained model for the 4D mixed gaussian peaks in multiple projections.

Figure 4.5 – Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian
double peak with peak width 0.25.

4.3 Analysis of the impact of hyperparameters

For the case of the double-peak gaussian with a peak width of 0.25 in 8 dimensions, one can
take a look on which choice of hyperparameters lead to a good performance. For this, all runs
with randomly assigned hyperparameters during the optimisation step are taken as the sample.
From this, one can take now a look on all runs which were within two standard deviations from
the best run (N=184). The distribution of their hyperparameters can be seen in figure 4.5. It
shows that, whereas the number of minibatches of 20000 points and the learning rate are more
or less uniformly present, there is a clear preference of the minimal number of coupling cells.
Shorter and wider NNs as well as higher weight decay and smaller number of bins are slightly
preferred.

The aim is now to gain a deeper understanding of the rate of convergence of the training.
For this, the above training set is split and the distribution of the hyperparameters and the

43

4.3. Analysis of the impact of hyperparameters

architecture parameters is compared for the quartile of models which converged after the shortest
and largest number of epochs. This can be seen in figure 4.6. In comparison, the learning rate
is very different for both sets, as expected. A high learning rate leads to less gradient descent
steps necessary in order to reach convergence. For the other parameters, the results are less
clear. Amongst the runs with less gradient descent steps, wide NNs with a higher number of bins
seem to be slightly more common. There are also more configurations with additional coupling
cells. However, the runs requiring more steps have in average more layers in their NN. This is
surprising, as in general, more complex architectures are more expressive and should train faster.
This could be a hint that for this function to be trained, less non-linear behaviour/activation
layers are needed. This would mean that introducing additional layer nodes is to be preferred
over introducing additional layers.

In light of this, it is worth to also look at the fastest and slowest quartile with respect to
time, which takes into account the numerical cost of more complex architectures, yet is prone
to poor generalizability due to technical factors. In figure 4.7, one can see again the direct
comparison. Again, the expected result that shorter runs were such which used a smaller number
of minibatches is realised. The learning rate tends to be higher for the fast runs, although the
correlation is much less clear than before. However, in light of the last result, it is interesting
to note that again a smaller number of layers with more nodes seems to have lead to a faster
training, as they also needed less epochs to finish the training.

The combination of wide NNs with only few layers seems therefore to be ideal with respect to
training time, reducing both the number of epochs needed as well as the numerical cost. The
expressiveness of the model is then given by the width of the NN. Indeed, many of the runs
with the best training result were of this combination of parameters, proving that it reaches not
only good but optimal results.

Now that it has been shown that neural importance sampling can be - if the right hyperpara-
meters have been found - used to train functions also in higher dimensions, the next step is to
relate this to phase space integrals.

44

4.3. Analysis of the impact of hyperparameters

Figure 4.6 – Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian
double peak with peak width 0.25. Top: data for the quarter which converged after the smallest
number of epochs. Lower: data for the quarter which converged after the biggest number of
epochs.

45

4.3. Analysis of the impact of hyperparameters

Figure 4.7 – Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian
double peak with peak width 0.25. Top: data for the quarter which converged after the shortest
time. Lower: data for the quarter which converged after the longest time.

46

Chapter 5
Phase Space Generation

In the following, the aim is to show that the neural importance sampling algorithm can be used
in event generators in order to improve the precision of the predicted cross section for cases
in which other importance sampling algorithms either fail or need detailed knowledge of the
integrand. In order to achieve this, the neural importance sampling is interfaced with modern
event and matrix element generators like MadGraph [46]. As importance sampling does not
require any information on the integrand, it can be applied to any matrix element. In order
to be used for phase space integration, the importance sampled target space has to be mapped
into the phase space. For the massless 2 → 2-case, this could be naively done by mapping
the hypercube of the importance sampling output into Rn, using for example the tangent, and
enforcing the kinematics during this mapping. This however does not evenly distribute the
phase space points and thus introduces additional variance. It is therefore of great interest to
have an (almost) flat phase space generator which at the same time only requires the minimal
amount of input variables for a process with multiplicity n, 3n− 4.

Although implementations for such a phase space generator, including in Python, are already
available, the "RAMBO on diet" [47] phase space generator was implemented during this thesis.
The motivation behind this is to make use of the GPU processing tools of PyTorch. This allows
to not only perform the importance sampling, but also the phase space generation on GPU. For
the case that a GPU-implementation of the matrix element would exist, the integration could
be completely performed on GPU, which would greatly increase the speed.

5.1 RAMBO

The first example of a phase space generator given here is RAMBO [48], which serves as an illus-
trative example of flat phase space sampling. Its advantage in comparison to older approaches
(see for example [49]) lies in the fact that instead of a hierarchical chain of subsequent decays
into two body states, the final states are generated democratically. For massless many-particle

47

5.1. RAMBO

final states, the weights associated with each phase space point are then identical. In other
words, in such a case the distribution in the phase space is uniform. As at the high energies of
colliders like the LHC the mass of particles can be often neglected and in the light of the results
of the last chapter, this is the case which is especially relevant for us.

This original algorithm performs for a n-particle final state the mapping [0, 1]4n into n 4-
momenta, depending on the centre of mass energy Ecm =

√
P 2. The phase space volume

for such a case is

Vn(Ecm) =
∫ n∏

i=1

d4pi
(2π)3 θ(p

0
i)δ(p2

i)(2π)4δ4
(
P −

n∑
i=0

pi

)
(5.1)

The starting point is to relax now the kinematical restrictions of momentum conservation. In
order to maintain a final integral, a weight function is included:

Rn =
∫ n∏

i=1

d4qi
(2π)3 θ(q

0
i)δ(q2

i)(2π)4f(q0
i) = (2π)4−2n

(∫ ∞
0

xf(x) dx
)n

(5.2)

Here, the integrals were performed using the distributions. Now, the task is to relate the pi and
qi using Lorentz and scaling transformations:

p0
i = x(γq0

i + b · qi) pi = x(qi + bq0
i + a(b · qi)b) (5.3)

with Qµ = ∑n
i=1 q

µ
i , M =

√
Q2, b = Q/M , γ =

√
1− b2, a = 1

1+γ and x = Ecm/M . This trans-
formation basically maps the qi into a configuration which respects the momentum conservation.
We will call this transformation

pµi = xHµ
b(qi) (5.4)

One can use this transformation in order to expand the left side of 5.2:

Rn =
∫ n∏

i=1

[
d4qi

(2π)3 θ(p
0
i)δ(p2

i)(2π)4f(q0
i) d4piδ

4(pi − xHb(qi))
]

d3b

δ3

b +
n∑
i=1

qi√
(∑n

i=0 qi)
2

 dxδ
x− Ecm√

(∑n
i=0 qi)

2

 (5.5)

This integral can be solved by substitution, providing:

Rn =
∫ n∏

i=1

(
d4pi
(2π)3 δ(p

2
i)θ(p0

i)
)

(2π)4δ4
(
Ecm −

n∑
i=1

pi

)(
f
(1
x
H0
−b(pi)

))
E4
cm

x2n+1γ
d3b dx (5.6)

Now, choosing an actual function which fulfils the condition of turning 5.2 into a finite integral,
like f(x) = e−x, gives for 5.2 the result:

Rn = (2π)2−n (5.7)

As we assume the incoming momenta to sum up to P = (Ecm, 0, 0, 0), we also have

f
(1
x
H0
−b(pi)

)
= e−

γEcm
x (5.8)

48

5.1. RAMBO

This enables us to perform the integration over b and x. One can write

Rn = Vn · Sn (5.9)

with

Sn = 2π(E2
cm)2 Γ(3/2)Γ(n− 1)Γ(2n)

Γ(n+ 1
2) (5.10)

This gives the correct expression for the phase space volume

Vn(Ecm) = (2π)(4−3n)
(
π

2

)n−1 (E2
cm)(n−2)

Γ(n)Γ(n− 1) (5.11)

The form of the sampled momenta is determined by the following algorithm:

In the first step, the 4n random numbers uji ∈ [0, 1] are used to generate n isotropic momenta
with energies distributed according to the density q0

i e
−qidq0

i (this represents the weight function
we saw earlier). This is achieved by:

ci = 2u1i − 1 φi = 2πu2i q0
i = log(u3iu4i)

qxi = q0
i

√
1− c2

i cosφi qyi = q0
i

√
1− c2

i sinφi qzi = q0
i ci

(5.12)

The isotropy is clear from this from, whereas the form of the energy distribution is a result of
induction (see Appendix C of [48]).

In the second step, it is only necessary to do the mapping from the qi’s to the pi’s as seen before.
This algorithm is indeed democratic in the sense that all final state momenta are chosen at the
same time and with the same likelihood.

Hierarchical algorithms can easily include masses in the final state. This is not the case for this
democratic approach, as a scaling is not possible without changing their masses. Therefore,
after having generated a set of massless uniformly distributed momenta, a second mapping to
massive momenta has to be performed.

One can implement this by solving the equation

Ecm =
n∑
i=1

√
m2
i + χ2(p0

i)2 (5.13)

for χ and then generating the new momenta as

ki = χpi, k0
i =

√
m2
i + χ2(p0

i)2. (5.14)

This transformation however does not leave the weights unchanged and, as demonstrated in
[48], introduces a Jacobian

WM =
[

1
Ecm

n∑
i=0
|ki|

]2n−3 [n∏
i=0

|ki|
k0
i

] [
n∑
i=1

|ki|2

k0
i

]−1

(5.15)

which breaks the uniformity of the distribution. However, for small masses, WM ∼ 1 and also
for greater masses, this algorithm has been proven to be superior to earlier approaches.

49

5.2. RAMBO on diet

5.2 RAMBO on diet

Although RAMBO fulfils the purpose of flat phase space generation, the necessity of 4n random
numbers is a major flaw, as this strongly increases the computational cost for neural importance
sampling, especially in the case of many-particle final states. This is the motivation behind the
"RAMBO on diet" algorithm [47], which reduces the required random numbers as input down
to the number of degrees of freedom 3n− 4.

The derivation of this algorithm is different. The starting point is the decomposition of the mul-
tiparticle phase space with final states {pi,mi} into subsequent 1→ 2 decays with intermediate
states {Qi,Mi}

dφn({p1,m1}, . . . , {pn,mn}|P) =
(

n∏
i=2

dφ2({pi−1,mi−1}, {Qi,Mi}|Qi−1)
)

×
(

n∏
i=2

θ(Mi−1 −mi−1 −Mi)θ
(
Mi −

n∑
k=i

mk

)
dM2

i

) (5.16)

with Q1 = P and {Qn,Mn} = {pn,mn} and without prefactors. Now, each of the two particle
phase spaces can be expressed in the rest frame of its mother particle:

dφ2({pi−1,mi−1}, {Qi,Mi}|Qi−1) = ρ(Mi−1,Mi,mi−1) d cos θi−1 dφi−1. (5.17)

Here, ρ is a weight that comes from the requirement of being on-shell:

pi−1 = −Qi = 4Mi−1ρ(Mi−1,Mi,mi−1)(cosφi−1 sin θi−1, sinφi−1 sin θi−1, cos θi−1)T

ρ = 1
8M2

i−1

√
(M2

i−1 − (Mi −mi−1)2) + (M2
i−1 − (Mi +mi−1)2)

(5.18)

The zero-component can be then deduced from the on-shellness condition. The resulting final-
state momenta can be brought into the centre-of-mass frame by a Lorentz boost, which preserves
flatness. The flatness of the phase space generation is, when the angles are sampled in such a
way that isotropy is guaranteed, only dependent on the sampling of the intermediate masses.
This can be achieved by sampling them proportional to the measure of the two body phase
spaces:

dMn(M2, . . . ,Mn−1|M1;m1, . . . ,mn) =

ρ(Mn−1,mn,mn−1)
(

n∏
i=2

ρ(Mi−1,Mi,mi−1)θ(Mi−1 −mi−1 −Mi)θ
(
Mi −

n∑
k=i

mk

)
dM2

i

) (5.19)

where M1 is the mass of the initial state.

In the case of massless final states, this can be written as

dMn(M2, . . . ,Mn−1|M1; 0, . . . , 0) = 1
8n−1

n−1∏
i=1

M2
i−1 −M2

i

M2
i−1

θ(M2
i−1 −M2

i)θ(M2
i) dM2

i (5.20)

50

5.2. RAMBO on diet

It is always possible to writeMi = u2 . . . uiM1. The ui can be seen as the ratios of centre-of-mass
energy being carried forward to the next decay at each step. Thus one gets

dMn(M2, . . . ,Mn−1|M1; 0, . . . , 0) = 1
8n−1M

2n−4
1

n−1∏
i=1

un−1−i
i (1− ui)θ(1− ui)θ(ui) dui (5.21)

Using vi = (n+ 1− i)un−ii − (n− i)un+1−i
i , this can be expressed as

dMn(M2, . . . ,Mn−1|M1; 0, . . . , 0) = 1
8n−1M

2n−4
1

1
(n− 1)!(n− 2)!

n−1∏
i=1

θ(1− vi)θ(vi) dvi (5.22)

Substituting this into 5.16 and performing the integrations over the angels and the mass restores
the earlier result for the phase space volume/weight of 5.11.

Starting from this description, it is possible to define an algorithm which performs a mapping
from [0, 1]3n−4 into the flat massless n-particle phase space, which is the desired result. Other
than the standard RAMBO algorithm, the structure of the generation is hierarchical due to the
usage of the intermediate masses, which leads to problems for our application which are dealt
with in the next section. For now, the following is the resulting flat phase space generation
algorithm:

Algorithm 1: RAMBO on diet in the massless case
Data: random numbers r0, . . . , r3n−4, Q1 = Ecm,M1 = Ecm,Mn = 0

Result: Flat sampled momenta {p1, . . . , pn} with weight Vn

for i = 2, . . . , n− 1 do
solve ri−1 = vi = (n+ 1− i)un−ii − (n− i)un+1−i

i for ui;

Mi ← u2 . . . uiM1;

cos θi ← 2rn−5+2i − 1, φi ← 2πrn−4+2i;

qi−1 ← 4Mi−1ρ(Mi−1,Mi, 0);

sin θi−1 ←
√

1− cos θi−1;

pi−1 = 4Mi−1ρ(Mi−1,Mi,mi−1)(cosφi−1 sin θi−1, sinφi−1 sin θi−1, cos θi−1)T ;

pi−1 ← (qi−1,pi−1),Qi ← (
√
q2
i−1 +M2

i ,−pi);

boost pi and Qi by Qi−1/Q
0
i−1;

end

pn ← Qn;

This algorithm is also straightforwardly invertible, just as it is the case with neural importance
sampling. For the massive case, two options exist. On the one hand, the boost described in the
last section can be used again. On the other hand, it is possible to avoid the computationally

51

5.3. GPU compatible implementation

expensive solving of 5.13 by relating the measure for the massive and the massless case. One
may define Ki = Mi −

∑n
k=1mk for i = 1, . . . , n− 1 and Kn = 0. Now, it is possible to express

the phase space measure of the massive final states by the phase space measure of the massless
final states with modified intermediate masses, by taking the quotient of their form in 5.19:

dMn(M2, . . . ,Mn−1|M1;m1, . . . ,mn)

=
n∏
i=2

ρ(Mi−1,Mi,mi−1)
ρ(Ki−1, Ki, 0)

n−1∏
i=2

Mi

Ki

dMn(K2, . . . , Kn−1|K1; 0, . . . , 0)
(5.23)

Thus, we only gain a prefactor for the weight, depending on the masses of the final state particles.

5.3 GPU compatible implementation

The presented algorithm suffers from the problem that the intermediate masses are generated
sequentially. Additionally, solving the equation for ui is a sequential operation, too. This
equation is usually solved using the bisection method, which searches for the root of the equation
by testing the sign of v−(n+2)un+1−(n+1)un+2 at the midpoint of the interval of interest and
choosing the interval in which the root is expected to lie. Due to this, the inspected interval has
to be updated during each iteration, and each following iteration is dependent on the earlier one.
This would strongly limit the advantages of GPU calculations when single phase space points are
generated, up to the point that calculation on CPU would actually be more efficient. However,
it is important to realise that all calculations during training are performed on batches. Due
to this, no single phase space points but sets of phase space points are to be generated. One
can use the vectorization feature of Python and rewrite the algorithm in terms matrices, such
that all operations are done for all phase space points at once. For sufficiently sized batches,
the calculation speed can be increased on GPU thanks to this.

The bisection however is still problematic, as not all phase space points will converge at the
same speed, or are guaranteed to converge beyond a defined threshold in a reasonable time. If
performed on all phase space points at the same time, this can greatly increase computational
cost. For this implementation, a choice was made which tries to balance speed and precision, by
stopping the bisection when the error is smaller than 10−16 for all phase space points or when
at least 600 steps were performed.

The comparison of the runtime in figure 5.1 underlines the great advantage of the vectorized
approach, not just for the GPU implementation but also for phase space generation on CPU.
It is important to note that the runtime for the phase space generation on GPU is virtually
only the overhead of initialising the calculation on the GPU; the runtime is, other than for
the CPU generation, almost independent on the batch size. Training on the GPU is therefore
highly attractive for increasing runtime and sanctions less the usage of a bigger batches, which
is necessary for stability for high-dimensional target spaces.

52

5.4. Phase Space Cuts

Figure 5.1 – Comparison of the runtime of different implementations for the generation for
4-particle massive final states. The batches were generated sequentially.

Sequential PS generator Vectorized PS generator
∆maxE 3.41E-13 9.10E-13

∆E 8.32E-14 6.92E-14

Table 5.1 – Comparison of the maximal and average difference of 40000 runs between initial and
final state energies in the phase space generator for the generation of 4-particle massive final
states.

m=0 m = 100 GeV2

Unweighting efficiency 1.0 0.061

Table 5.2 – Unweighting efficiency of 40000 runs with massless massive final and initial states
at Ecm = 1000GeV2.

The data in table 5.1 prooves that the great speedup observed earlier does not come at an
unacceptable loss of precision, which is for both at the same order of magnitude and does not
suffer from considerable outliers.

The present implementation supports central 2→ n, n > 1 processes with massive or massless
initial and final states. In order to provide the same functionality as MadGraph, additional
features need to be included.

5.4 Phase Space Cuts

Many processes suffer from divergent matrix elements. Examples of such divergences are the
Coulomb divergence for e+e− → e+e−, for which divergences occur in the t-channel, or the
matrix elements of three-jet processes, which diverge if one of the outgoing particles has low

53

5.4. Phase Space Cuts

energy or is collinear to another outgoing particle (see for example [50]). In order to regularise
the integral and achieve a finite result, MadGraph includes multiple phase space cuts in the
lab frame which are applied inside the phase space generator. Therefore, to be able to come to
similar results, it is necessary to include these cuts in this generator too.

The first of this is a cut in the transverse momentum for all of the outgoing momenta, which
reads

(p1
i)2 + (p2

i)2 = (pi,0)2 sin2 θi > p2
T,min (5.24)

This enforces that the Mandelstam variable t between one of the ingoing and one of the outgoing
variables is bounded from above:

t = (pin − pout)2 = −2p0
inp

0
out(1− cos θout) (5.25)

for the massless case.

The next important cut is the rapidity cut. This enforces that the pseudo-rapidity

ηi = 1
2
|pi|+ p3

i

|pi| − p3
i

(5.26)

is limited from above for each particle. The pseudo-rapidity is a measure describing the angle of
the particle relative to the beam axis, but other than for θ differences in η are Lorentz invariant
under longitudinal boost. High values of η imply a movement quasi along the beam axis. This
cut is in a certain way similar to the pT cut. However, events are also cut out which have a high
enough transverse momentum but are still strongly dominated by their longitudinal momentum
due to their high energy. The motivation for this cut is that events with a small angle to the
beam cannot be detected by the detector, and need therefore to be filtered out by the event
generator in order to produce comparable predictions.

The third cut is a cut in the angular distance√
∆(ηi, ηj)2 + ∆(φi, φj)2 > ∆R,min (5.27)

between all final state particles. This ensures that none of the final state particles is collinear.
Together with the cut in transverse momenta, this prevents for example the soft and collinear
divergences of the three-jet cross section.

If one of the cuts becomes active for one particle or pair of particles, the corresponding event is
weighted zero and does therefore not contribute to the cross section.

The comparison in table 5.3 shows that the cross sections by MadGraph, calculated with
its included phase space generation, reaches identical results to the calculation using the here
presented phase space generator and the matrix element standalone Fortran output of Mad-
Graph, thus validating the correct implementation of the phase space generator.

54

5.5. Hadronic Processes

MadGraph 5 PS generator (pb) PyTorch PS generator (pb)
LO e+e− > e+e− 32.710 ± 0.033 32.680 ± 0.066
LO e+e− > tt̄h 2.005 ± 0.042 × 10−3 1.988 ± 0.050 × 10−3

LO e+e− > uūj 0.216 10± 0.000 61 0.213 40± 0.000 62

Table 5.3 – Comparison of the cross section calculated from the MadGraph matrix element,
either with the integrated integration tool or using the developed PyTorch PS generator and
importance sampling with VEGAS. Ecm = 1000GeV2, pT,min = 10GeV, ηmax = 2.4,∆R,min =
0.4.

.

5.5 Hadronic Processes

Apart from the electron-positron collisions, which were investigated in table 5.3, proton-proton
collisions are of great interest in particle physics. The underlying hard processes are interactions
between partons (quarks of different flavors and gluons). Depending on the energy of the
interaction, the different partons have different densities and carry a fraction x of the proton
momentum. Due to the centre-of-mass energy of the hard process being now not fixed anymore,
enhancements can happen along different channels, for example if the interactions happen via
a virtual Z-boson and the centre of mass energy (x1 +x2)Ecollider2 approaches the Z-boson mass.
If this is possible via the s and the t channel, for example for dd̄→ dd̄, this can lead to a case
for which the VEGAS integrator has difficulties.

In order to include this behaviour in the phase space generator, it is necessary to sample to
additional random numbers, one for each of the momentum fractions of the partons, which are
called the Bjorken x . In order to accommodate more easily the physical integration boundaries,
they are not sampled directly, but instead

τ = x1x2 η = 1
2 log x1

x2
(5.28)

which can be rewritten to

x1 =
√
τ exp η x2 =

√
τ exp−η (5.29)

The Jacobian of this transformation

J =
 ∂τ

∂x1
∂τ
∂x2

∂η
∂x1

∂η
∂x2

 =
 x2 x1

1
2

1
x1
−1

2
1
x2

 (5.30)

has a determinant of 1, such that no additional variance is induced. The boundaries of the
sampling are

max(Ecm,min,
∑n
i=0mi)

Ecm
≤τ ≤ 1

1
2 log τ ≤η ≤ −1

2 log τ
(5.31)

55

5.5. Hadronic Processes

MadGraph 5 PS generator (pb) PyTorch PS generator (pb)
QCD LO uu > uu 3.508± 0.012× 105 3.56 ± 0.18 × 105

QCD LO ug > ug 4.236± 0.014× 106 4.21 ± 0.11 × 106

QCD LO ug > ugg 2.209± 0.068× 105 2.27 ± 0.12 × 105

QCD LO uc̄ > uc̄g 3.425± 0.010× 103 3.425± 0.073× 103

Table 5.4 – Comparison of the cross section calculated from the MadGraph matrix element,
either with the integrated integration tool or using the developed PyTorch PS generator and
importance sampling with VEGAS Ecm = 1000GeV2, pT,min = 10GeV, ηmax = 2.4,∆R,min = 0.4,
PDF set NNPDF23_nlo_as_0119.

.

which induce flat volume factors to the weights. Ecm,min is the lower energy boundary until
which a process is seen as a hard process. We fix it to 1GeV2 for the rest of this work. Taking
into account the Bjorken x, the interaction is now not anymore between two particles with
momenta p1 and p2, p1 = −p2, but instead with p′1 = x1p1 and p2 = x2p2. Although the
incoming momenta are now not anymore in the centre-of-mass frame, an additional Lorentz
boost is performed in the end so that the output is indeed in the centre-of-mass frame.

With the information of the Bjorken x and the nature of the incoming particles, it is now possible
to include the value of the PDFs in the weights. This will be done by interfacing LHAPDF
[51], with which we will in the following access the NLO PDF set NNPDF23_nlo_as_0119 [52].
LHAPDF extrapolates the value of the PDF for the incoming particles based on their flavor,
momentum fraction and the renormalization scale (chosen in the following to be the Z-mass,
which introduces an additional considerable computational workload done exclusively on the
CPU.

We would like to validate again that this implementation leads to the same cross-sections in com-
parison to using the phase space generation and integration included in MadGraph. Therefore,
table 5.4 contains a comparison of the results.

56

Chapter 6
Neural importance sampling for cross

section integrations

After investigating different methods of neural importance sampling, the importance of hyper-
parameters, the behaviour for complex structures in higher dimensions and efficient methods of
mapping between the output of the importance sampling and the momenta, which are the input
of matrix elements, it is now time to investigate which advantages neural importance sampling
has in the current implementation for the integration of matrix elements.

6.1 Modification of the loss function

In a first step, an important change has to be made to the loss function in order to be able to
safely train any matrix element. Starting with our investigation with LO process e+e− → µ+µ−,
it became clear that the variance proxy used for the training so far, although less prone to
statistical errors, is insufficient to guarantee successful training.

The differential cross section of this process is proportional to (1 + cos2 θ). Naively, one would
expect the same training behaviour for cos2 θ and (1 + cos2 θ) as the peak size and position are
identical. Other than the test functions used before, this integrand does however not reach a
value close to zero, neither does the loss function approach zero but a constant. A constant
offset leads to a term in the variance proxy proportional to the mean of the Jacobian squared,
which favours small values for the Jacobian, especially if the non-constant part of the function is
of a small value. This is the reason why the training with the variance proxy fails for (1+cos2 θ).
Calculating instead the sample variance on the batch does eliminate the effect of the constant
offset, as now a small variance of the Jacobian is favoured. With this loss function, indeed an
identical training behaviour is observed for the case with and without the offset.

A second observed issue is related to the scaling of the integrand. For small scales of the
integrand, the training suffers from strong instabilities. Although cos2 θ and 1× 10−20 cos2 θ

57

6.2. Comparison of the neural importance sampling and VEGAS

have the same peak structure, the latter is less likely to train successful. This is related to
numerical errors and instabilities in the calculation of the loss. In order to compensate this, the
integrand is rescaled by its maximal observed value during the evaluation of the function. This
can be done as the rescaling does not change the position and ratio of peaks.

With these modifications in place, it is possible train any matrix element which is passed to the
neural importance sampling. However, they introduce additional instability to the algorithm as
neither the correct rescaling factor nor the correct mean are known. The question of interest
is now if an improvement over other importance sampling methods can be reached also for this
integrands.

6.2 Comparison of the neural importance sampling and
VEGAS

In the following, the effect of the neural and VEGAS importance sampling on the variance
of MadGraph matrix elements in the Fortran output are investigated for different standard
model processes at Ecm = 1 TeV. The PyTorch phase space generator will be used, including
the PDFs when necessary. The cuts are fixed as pT,min = 10 GeV, ηmax = 2.4 and ∆R,min = 0.4.
For the comparison with VEGAS, the VEGAS algorithm is optimised until it gives virtually
no variance improvement. The setup of the neural importance sampling is gained by doing a
hyperparameter optimisation similar to before. As we could show that the piecewise-quadratic
coupling cells are superior, only they will be investigated in the following. The hyperparameters
of the batch size, the length and width of the neural network, the number of bins, the learning
rate, weight decay and the preburn time are chosen from a wide spectrum to find the optimal
setup for the variance reduction. The setup is found by taking the setup with the smallest
variance amongst 75 generated configurations. The optimal configuration is then trained 10
times, in order to see how stable its performance is.

6.2.1 e+e− → µ+µ−

As mentioned before, the LO matrix element of this process can be expressed in an especially
simple way which is free of any peaks due to the fixed centre-of-mass energy in interactions
of electron-positron beams. The number of degrees of freedom necessary to generate a phase
space point are 2. Comparing therefore the properties of this matrix element with the behaviour
observed in Chapter 4, no improvement over VEGAS is to be expected.

Indeed, table 6.1 and figure 6.1 show that no improvement could be achieved over VEGAS, which
can handle very well uncorrelated low dimensional situations. Neural importance sampling
achieves a stable improvement, with minor dependency on the hyperparameters, but is not able

58

6.2.2. gu→ gu

to outmatch VEGAS. It is therefore more interesting to look into processes which have a peaked
structure.

Original variance NIS VEGAS # SD VRF ratioVRF # Eval VRF # Eval
2.63×10−20 5.7± 1.6× 10−2 1.45± 0.57× 107 1.49± 0.44× 10−2 2.30± 0.12× 106 0.12 3.840

Table 6.1 – Comparison of the performance of the best NIS setup and VEGAS for LO e+e− →
µ+µ−. VRF stands for the mean reduction factor of the variance.

Figure 6.1 – Histogram of the performance of the different setups during hyperparameter op-
timisation for e+e− → µ+µ−. The blue line is the variance reduction achieved by VEGAS with
its standard deviation.

6.2.2 gu→ gu

Investigating proton-proton collision introduces the PDFs and by this peaked behaviour in the
dimension of the Bjorken x. The parton distribution functions have a characteristic shape, in-
creasing sharply at low Bjorken fractions and could benefit from applying suitable importance
sampling. The first process investigated here is the LO in QCD of gu → gu. As the light
quarks are assumed massless at this energy scale, no propagator peaks are present. It is never-
theless interesting to see how neural importance sampling behaves in this slightly more complex
situation.

Table 6.2 and figure 6.2 show that here indeed neural importance sampling can gain a small
advantage, although great improvement is rare and suffers from instabilities. It shows however

59

6.2.3. uc→ ucg

Original variance NIS VEGAS # SD VRF ratioVRF # Eval VRF # Eval
0.048 3.8 ± 3.3 × 10−3 1.93± 0.52× 107 1.24± 0.22× 10−2 1.26± 0.38× 106 0.73 0.27

Table 6.2 – Comparison of the performance of the best NIS setup and VEGAS for QCD LO
gu→ gu. VRF stands for the mean reduction factor of the variance.

Figure 6.2 – Histogram of the performance of the different setups during hyperparameter op-
timisation for gu → gu. The blue line is the variance reduction achieved by VEGAS with its
standard deviation. The yellow bin refers to setups which could achieve no variance better than
20% of the original value, the red bin refers to setups which achieved no improvement.

that neural importance sampling, under the the proper choice of the hyperparameters, can reach
competitive results to VEGAS.

6.2.3 uc→ ucg

Similar results are expected for a three-jet cross-section in LO QCD. The additional degrees
of freedom are however a potential issue for the VEGAS algorithm, as it has been shown be-
fore that it performs worse in higher dimensions. Apart from this, the phase space cuts gain
increased importance when three final state particles are present, as for example the angular
distance between two jets can reach zero and lead to divergences. The phase space cuts intro-
duce discontinuous behaviour, which is potentially a challenge both VEGAS and for the neural
importance sampling.

60

6.2.4. dd̄→ dd̄ via Z

Original variance NIS VEGAS # SD VRF ratioVRF # Eval VRF # Eval
5.87× 10−8 9.4 ± 4.3 × 10−3 1.6 ± 1.0 × 107 7.1 ± 2.2 × 10−2 4.50± 0.63× 106 0.98 0.13

Table 6.3 – Comparison of the performance of the NIS and VEGAS for QCD LO uc → ucg.
VRF stands for the mean reduction factor of the variance.

Figure 6.3 – Histogram of the performance of the different setups during hyperparameter op-
timisation for uc → ucg. The blue line is the variance reduction achieved by VEGAS with its
standard deviation. The yellow bin refers to setups which could achieve no variance better than
20% of the original value, the red bin refers to setups which achieved no improvement.

Table 6.3 and figure 6.3 show that neural importance sampling indeed can outperform VEGAS
also for this case, and with a greater improvement than for the 2 jet example. However, the
price is an increased variance of the quality of the results.

6.2.4 dd̄→ dd̄ via Z

For this process, two diagrams exist: one s-channel and one t-channel diagram. As the Z boson
is massive, the s channel has a peak near the Z mass whereas the t channel has a peak near
the vanishing transverse momentum. Other than before, we use here pT = 0.1 in order to test
the full peak. When the Bjorken x are sampled directly and not via the τ and η, these peaks
are not aligned to a single coordinate axis. Looking at the variance reduction in table 6.4 only
would lead to the conclusion that VEGAS is superior.

It is important to mention however that the improvement VEGAS reaches over the neural
importance sampling comes at the cost of a greatly increased number of function evaluations.

61

6.2.4. dd̄→ dd̄ via Z

Original variance NIS VEGAS # SD VRF ratioVRF # Eval VRF # Eval
7.37× 10−12 2.5 ± 1.2 × 10−1 1.14± 0.21× 106 9.8 ± 2.8 × 10−2 2.75± 0.57× 107 0.79 2.61

Table 6.4 – Comparison of the performance of the NIS and VEGAS for dd̄ → dd̄ via Z. VRF
stands for the mean reduction factor of the variance.

If a too small number of evaluations during each iteration is chosen, VEGAS does not properly
recognise the peak structure and introduces systematic errors. This does greatly increase the
computational cost in comparison to neural importance sampling, for which systematic errors
are less likely to occur. Indeed, comparing the value of the cross section for the mentioned
configuration after integrating only over 3.6× 106 points in table 6.5 and 6.6 shows that the
VEGAS precision is misleading, as high systematic errors prevail.

MadGraph 5 MC w/o importance sampling NIS
σ in pb 40.740± 0.054 39.1± 5.7 40.52± 0.35

Table 6.5 – Overview of the result for dd̄→ dd̄ via Z for different integrators.

VEGAS with 3× 106 eval. VEGAS with 6× 106 eval. VEGAS with 9× 106 eval.
σ in pb 42.24± 0.25 41.03± 0.17 40.43± 0.14

Table 6.6 – Overview of the result for dd̄ → dd̄ via Z for VEGAS at different values for the
number of function evaluations.

Although neural importance sampling does require expensive training in advance, including
often hyperparameter optimisation, it allows importance sampling with a lower risk to loose the
information about the peaks and by this about the correct value.

The output of the projection of the trained model in two dimensions in comparison to the
interpolated projection of the value of the integrand helps to understand how neural importance
trains these complex structures. It is important to realise that this integrand suffers from
multiple orders of magnitude difference in value, originating from the PDFs as well from the
propagator peaks. As a consequence, it is considerably harder to train than the examples studied
in the last chapter. It is therefore interesting to look at the structures which were recognised
by the training.

Figure 6.4 shows that there is, as expected, a strong improvement of the integrand for small
Bjorken x, as the PDFs reach very high values here, and a preference for a high value of x0 as
this minimises t. Looking at the trained mapping, although it did not train perfectly, especially
the peak for the intersection of both improvements was detected as well as a generally increased
likelihood for small t. However, the histogram shows also the limitation the difference of three
orders of magnitude could not be reflected by the mapping, as in almost all regions of the
(x0 − x2)-plane there is still a considerable chance to be sampled in. High differences in the
integrand value seem to be a limiting factor of the efficiency of this integration strategy.

62

6.2.4. dd̄→ dd̄ via Z

Figure 6.4 – The (x0 − x2) plane, referring to θ and the Bjorken x of the d, of the integrand
(left) and the trained model (right).

The most interesting structure can be observed in the plane of both Bjorken x, as here the
solution of xdxd̄s = m2

z is a peak, which has both a part parallel to the x2 and the x3 axis.

Figure 6.5 – The plane of the Bjorken x of the integrand (left) and the trained model (right).

Figure 6.5 shows that similiar to before, the main peak is recognise, but residual noise exists all
over the plane. It is an important observation that the position and form of the peak is very
well recognised.

In a last step, these observations are compared to the VEGAS grid.

Figure 6.6 shows that both discussed peaks are recognised by VEGAS. For the s-peak, the form
of the peak can not be represented and is thus only optimised closely around its highest value.
The peak in t, improved by the effect of the PDF, shows that the peak along the x2-axis is at
the same height as in the (x2, x3)-plane as each axis is improved separately and thus taking not
into account the different position of the peak in x2 in both planes . In this case, this leads to a
small deviation of the optimal position which is, as seen in comparison to 6.4. This is something

63

6.2.4. dd̄→ dd̄ via Z

Figure 6.6 – Both planes in the VEGAS grid.

which neural importance sampling can accommodate more easily. Thus it becomes clear that,
if the peaks can be represented more clearly, that neural importance sampling can adapt to this
process better.

64

Conclusions and outlook

The goal of this thesis was the introduction of machine learning techniques and their application
to the calculation of cross sections. Machine learning was used in order to perform an importance
sampling which induces a change of variables such that the efficiency of Monte Carlo integration
is increased. This is possible as neural networks are non-linear function approximators, and are
therefore very well suited for learning the integrand during integration in order to improve the
result.

This method of choice for this neural importance sampling was one using normalizing flows,
which allows invertability as well a simple calculation of the Jacobian of the transformation.
Different implementations of this normalizing flows were discussed: the affine, the piecewise-
linear and the piecewise-quadratic coupling cells. Starting from two dimensional problems,
their training process was discussed. It became clear that the piecewise-quadratic coupling cells
are superior due to their higher flexibility in representing the integrand. As a benchmark for
the quality of the results of this algorithm, the VEGAS importance sampling was used. This
approach does not require prior knowledge of the integrand as long as no correlations along the
coordinate axes are present.

In a subsequent step, the behaviour of the piecewise-quadratic coupling cells was studied more
in detail. In a wide range comparison run, optimal configurations were searched for the multidi-
mensional multi-peak gaussians up to dimension 32. Hyperparameter optimisation is necessary
in order to achieve results of high quality, as it is strongly dependent on finding one of the
optimal sets of parameters. It was shown that wide and short neural networks are preferred,
and that enforcing high learning rates gives rise to models which train faster. The main result
of this explorative run was that neural importance sampling is inferior to VEGAS in in the pres-
ence of non-correlated functions, as VEGAS performs well there. This makes clear that neural
importance sampling is at the present not suited as a general replacement of other methods of
importance sampling, but is rather an alternative in cases which are otherwise hard to handle.
It became also evident that the stability of the training decreases if the points in the sampled
batch are scarce in the integration volume.

65

Conclusions and outlook

After this general work on neural importance sampling, the next aim was to apply it to cross
sections. A phase space generator was needed, which should introduce as little additional
variance as possible. The flat phase space generator RAMBO on diet was implemented in such
a that a batch of flatly distributed phase space points can be generated on GPU much faster than
on CPU. With this in place, it was now possible to interface the MadGraph 5 output. Special
attention was given to the dd̄ → dd̄ via Z process as it suffers from peak structures which are
hard to deal with using regular VEGAS importance sampling. Although VEGAS could yet not
be outperformed in terms of pure variance reduction, a considerably lower number of function
evaluations was needed in order to achieve the improvement.

In the light of these results, there are still multiple areas of improvement for this approach.
Due to the great dependency on hyperparameter optimisation, this is a point where both speed
and quality of the result can be substantially improved. Using more sophisticated approaches
of hyperparameter optimisation than random search, for example Bayesian or gradient-based
optimisation, can effect in a better ratio between tested setups and reached optimisation. The
same can also be achieved when investigating which are typical values (such as values of 5× 10−2

to 5× 10−4 for the learning rate) for the hyperparameters, in order to reduce the size of the
parameter space. For the experiments here, a wide range was used as the typical values for
optimal setups are yet unknown. Apart from this, it is maybe also necessary to define a better
way of rating setups. Using the optimal achieved variance only is very sensitive to statistical
errors and instable models.

One important improvement can be achieved when implementing the inverse model. The nor-
malizing flows are straightforwardly invertible, as well as the RAMBO on diet algorithm. De-
fining a training set of momenta and the corresponding value of the matrix element allows, after
mapping the momenta into the unit hypercube, to train on the inverse, which saves the eval-
uation of the function during optimisation and reduces statistical errors. Both would greatly
increase the usability of this approach.

An interesting point of investigation would be also to use a different loss function. The presented
implementation uses the variance or a variance proxy for training. Although this is the most
natural choice when aiming at improving the efficiency of a Monte Carlo integration, there
are other natural choices which could give different results, for example the Kullback-Leibler
divergence between the uniform distribution and the product of the function value and the
Jacobian. Both should provide the same minimum, but do not necessarily have the same
training behaviour.

The deciding factor for the success of neural importance sampling is however if indeed a gain
in the integration speed at a fixed precision can be achieved. In comparison to VEGAS, the
computational cost is due to the rich structure of the quadratic coupling cells higher. In general,
the analysis of Chapter 4 shows also that neural importance sampling needs a comparable
number of function evaluations to reach the optimal variance. However the numerical cost of

66

Conclusions and outlook

the hyperparameter optimisation is still a great flaw. Whereas possible solutions for this had
been already discussed, the runtime of a single setup has especially for the cross section still a
great potential of optimisation. As pointed out in the first chapter, this can indeed be easily
compensated by a small decrease in variance, as doubling the precision requires 4 times the
amount of evaluations.

A question which stays is if these possible improvements can help to outperform VEGAS or
even the more sophisticated methods of multi-channelling in MadGraph, or if these can be
combined with the neural importance sampling in order to improve the overall performance and
to provide a general integrator for cross sections. It would be a great advantage if the perform-
ance of VEGAS could be reached also for integrals where VEGAS is performing well, as neural
importance sampling could then possibly replace VEGAS as a general process-independent in-
tegrator. However, in order to achieve this, neural importance sampling has to be studied more
in detail.

67

Appendix

Implementation

In this Appendix, the most important classes and functions of the implementation presented
in the earlier chapters are outlined. The tools were written in Python using the PyTorch
framework, and are compatible both with Python 2 and Python 3.

Neural importance sampling

We focus here on the the class of the piecewise-quadratic coupling cells, as these were in the
focus of this thesis due to their superior performance.

class PWQuad

A daughter class of torch.nn.Module, the basic Pytorch class for neural network models.
This is the central class for the piecewise-quadratic coupling cells. It represents a single
piecewise-quadratic coupling cell. The constructor takes the following arguments:

flow_size: The number of transformed dimensions.
pass_through_size: The number of preserved dimensions.
n_bins: The number of bins for the quadratic interpolation.
NN_layers: A list giving the number of nodes for each layer of the neural network.

The neural network of the coupling cell is an instance of the following class:
class RectNN

This is itself also daughter class of torch.nn.Module. It describes a rectangular neural net-
work consisting out of a batch normalisation layer in the beginning, followed by multiple
sets of a linear, a batch normalisation and a ReLU layer. The final layers are a linear layer
(in order to be able to reach the whole R) and a reshaping layer. This class is used to

68

Appendix

construct the neural network used by the coupling cell. The initialiser takes the following
arguments:

pass_through_size: The number of preserved dimensions.
sizes: A list of the number of output nodes of the linear layers. The length of the
list determines the length of the rectangular neural network.
reshape: A tuple containing the information of the required shape of the output.

class PWQuadManager

A daughter class of BasicManager, which contains the training logic. It is initialised with
n_flow , the number of dimensions of the training input. A similiar class exists for the
piecewise-linear coupling cells. After initialising the manager, the following methods per-
form the training:

create_model(n_cells, n_bins, NN, dev):

n_cells: The number of coupling cells. If the number is smaller than what is re-
quired for the training dimension, it will be automatically adjusted to the minimum
required number. If more than the minimum number of coupling cells are requested,
additional coupling cells are added which transform one dimension each.
n_bins: The number of bins for the quadratic interpolation.
NN: A list giving the number of nodes for each layer of the neural network.
dev : An integer specifying which GPU should be used. Default to 0. If no GPU is
available, the argument is not necessary and the CPU will be used.

This method creates the coupling cells and connects them in a sequential model such that
each dimension is transformed never twice at the same time as any other dimension

_train_variance_forward(f, optimizer_object,log, logdir, batch_size, epochs, epoch_start,
pretty_progressbar, save_best, run,dev,mini_batch_size, integrate, preburn_time, kill_counter,
impr_ratio, loss_mode):

f : The integrand which is to be trained. The only requirements are that it takes
arguments of shape a× n_flow, where a is a variable length (the batch_size) and
returns a 1D-tensor of length a containing the results
optimizer_object: This is a PyTorch optimizer which is used for the gradient des-
cent, initialised with the chosen learning rate.
log : If this is true, the initial and best model are saved as a pickle on the disk, as
well as additional information about the run (see save_best). Default is True.
logdir : Relative path for saving the model. Default is None.

69

Appendix

batch_size: The number of function evaluations per epoch. Default is 10000.
epoch: The maximal number of epochs used for training. Default is 1000.
epoch_start: The starting point of counting the epochs, useful if an existing model
is to be refined. Default is 0.
pretty_progressbar : If enabled, displays progressbars with the current progress of
the training. Default is True.
save_best: If enabled, the best model (defined as the state of the model when the
loss was minimal) is saved under self.best_model. Additional information, like the
number of function evaluations, the initial and best loss etc. are saved in their re-
spective fields and can be called from the fields of the manager after the training is
completed. Default is True.
run: The run ID if hyperparameter optimisation is performed with a experiment
observer of the Python sacred package. Default is None.
dev : An integer specifying which GPU should be used. Default to 0. If no GPU is
available, the argument is not necessary and the CPU will be used.
mini_batch_size: Has to be smaller then the batch size, otherwise it is set identical
to the batch size. If smaller than the batch size, the batch is divided in equal
sized mini-batches. In each epoch, bbatch_size/mini_batch_sizec evaluations are
performed. The advantage of the usage of minibatches is the reduced memory con-
sumption at the price of increased runtime.
integrate: If True , integrates during each step with the current model, and after the
training stopped for each leftover epoch. The result is the weighted average using
the inverse variance as weight. The usage is discouraged for small batch sizes as
fluctuations of the model during the training can lead to systematic errors. Default
is False. If it is active, a tuple of the integration result and its error are returned,
otherwise the tuple is set to (0,0).
preburn_time: The number of epochs for which at the beginning of the training,
not the mapped input variables are used but the original ones, together with the
Jacobian of the mapping. By this, the Jacobian is trained on a uniform target space.
The preburner is stopped early if the loss has fallen under a fourth of the initial loss.
The preburn time is also used as a characteristic epoch time for the early stopping
regularization. Default is 75.
kill_count: The number of epochs during which the loss is allowed to increase in a
row before the training is stopped. If the preburner is still active, normal training
starts and the counter is reset. Default is 7.
impr_ratio: 1 − Q, with Q the ratio between the current best loss and the best
loss n epochs before. n is the characteristic time of the training, which is either
preburn_time or, if this is smaller than 10, set to 50. Default is 1e-2.
loss_mode: If equal to "var", the batch variance is used as a loss function. If equal

70

Appendix

to "est", the loss proxy (without the estimate of the integral value) is used. Default
is "var".

integrate(f, nitn, neval, dev):

f : The integrand which is to be trained. The only requirements are that it takes
arguments of shape a× n_flow, where a is a variable length (the batch_size) and
returns a 1D-tensor of length a containing the results.
nitn: The number of subsequent integration steps.
neval : The number of function evaluations per step.
dev : The id of the GPU to use. If no GPU is available, CPU is used. Default is 0.

Performs a Monte Carlo integrations sampled by the best model, and returns the weighted
(inverse variance weight) average of the nitn steps with the integration error.

Phase space generation

class FlatInvertiblePhaseSpace

A daughter class of VirtualPhaseSpaceGenerator and shares the same initialiser:

initial_masses: A list containing the initial masses.
final_masses:A list containing the final masses. Its length determines the size of
the phase space.
pdf : A LHAPDF object, constructed from the LHAPDF Python bindings. De-
fault is None.
pdf_active: Determines if PDFs should be used. Default is False.
tau: Determines how the integration over the Bjorken is parametrized. Default is
True, meaning that not the Bjorken x directly but τ and η are sampled.

This class provides the logic of creating sets of final momenta. The most important meth-
ods are:

nDimPhaseSpace():
Returns the dimensionality of the phase space.

bisect_vec_batch(v_t, target, maxLevel):

v_t: The vector of v values. See 5.21.
target: The target accuracy. Default is 1e-16.
maxLevel : The maximal number of iteration steps. Default is 600.

71

Appendix

Uses a vectorized bisection in order to solve 5.21. Returns u.

get_pdfQ2(pdf, pdg, x, scale2):

pdf : The LHAPDF object.
target: The PDG code of the ingoing particle. If it is an unkonwn code, the return
value is 1.
x: A 1D-tensor containing the Bjorken x.
scale2 : The squared renormalization scale.

Returns the value of the PDF for the ingoing particle without the factor of x.

generateIntermediatesMassless_batch(M, E_cm, random_variables):

M: A tensor of size batchsize×(n − 1) with n the number of final state particles,
initialised with the centre-of-mass energy at the first entry.
E_cm: The 1D-tensor of the centre-of-mass energy.
random_variables: The random variables to-be-mapped to the phase space.

Generate intermediate masses for a massless final state, following the algorithm described
in chapter 5. Returns a weight-tensor with the flat weights.

generateIntermediatesMassive_batch(M, E_cm, random_variables):

M: A tensor of size batchsize×(n − 1) with n the number of final state particles,
initialised with the centre-of-mass energy at the first entry.
E_cm: The 1D-tensor of the centre-of-mass energy.
random_variables: The random variables to-be-mapped to the phase space.

First calls the generation of the intermediate masses, then modifies them for the massive
case. Returns a weight-tensor.

setInitialStateMomenta_batch(output_momenta, E_cm):

output_momenta: A tensor of size batchsize×(2 + n) × 4, with n the number of
final state particles.
E_cm: The 1D-tensor of the centre-of-mass energy.

Sets the initial state momenta according to the centre-of-mass energy of the system.

get_flatWeights(E_cm, n):

72

Appendix

E_cm: The 1D-tensor of the centre-of-mass energy.
n: The number of final particles.

Initialises the weights to the weights of the flat, massless case. Returns the weight.

generateKinematics_batch(E_cm, random_variables_full, pT_mincut, delR_mincut,
rap_maxcut, pdgs):

E_cm: The 1D-tensor of the centre-of-mass energy.
random_variables_full : The tensor of random numbers. If the PDF mode is active,
the last two entries for every batch element contain the information for the Bjorken
x.
pT_mincut: The minimal value for pT (transverse momentum) for any of the final
state particles. If pT is lower, the weight of this point is set to zero. Default value
is −1 (no cut).
delR_mincut: The minimal value for ∆R between any two particles. If ∆R is lower,
the weight of this point is set to zero. Default value is −1 (no cut).
rap_maxcut: The maximal value for η of any particles. If η is lower, the weight of
this point is set to zero. Default value is −1 (no cut).
pdgs: A two element list with the PDG codes of initial state particles. Default is
[0, 0] which is equivalent of a non-parton particle.

After checking for the validity of the entered data, the centre-of-mass energy is adjusted if
the PDFs are active. After this, the phase space is generated according to the "RAMBO on
diet"-algorithm (see Chapter 5). The weights are agglomerated, and the PDFs are included
in the weight tensor. The cuts are checked in the lab frame. If a phase-space point fails the
cut criteria, its weight is set to zero. Afterwards, the momenta are boosted into the centre-
of-mass frame. Returns a tuple of (output_momenta, weight), where output_momenta is a
batchsize×(2 + n)× 4-Tensor and weight is a 1D-Tensor of the length of the batchsize. A
single phase space point can be generated by setting the batchsize equal to 1.

Results of the hyperparameter optimisation

The following tables contain an overview of the results of the hyperparameter optimisation in
chapter 4.

73

Appendix
#

pe
ak

s
P
ea
k
w
id
th

O
ri
gi
na

l
va
ri
an

ce
N
IS

V
E
G
A
S

#
SD

V
R
F
ra
ti
o

re
l.

sp
ee
du

p
V
R
F

#
E
va
l

V
R
F

#
E
va
l

1
0.
15

3.
03
3E

-0
2

2.
95
2E

-0
2±

4.
86
E-

03
1.
81
0E

+
06
±

4.
33
E+

05
6.
49
7E

-0
4
±

1.
31
E-

05
3.
54
E+

06
±

4.
32
E+

05
1.
07
E-

01
4.
54
3E

+
01

2.
22
E-

02
0.
25

6.
10
3E

-0
2

2.
83
8E

-0
2
±

4.
84
E-

03
4.
32
0E

+
06
±

6.
54
E+

05
3.
70
5E

-0
4
±

1.
02
E-

04
4.
00
E+

06
±

1.
32
E+

06
9.
43
E-

02
7.
51
2E

+
01

1.
33
-0
2

0.
35

6.
69
4E

-0
2

3.
59
1E

-0
2
±

1.
34
E-

03
1.
81
00
E+

07
±

8.
16
E+

05
6.
18
32
E-

04
±

3.
97
E-

05
3.
51
E+

06
±

1.
76
E+

06
2.
23
E-

01
5.
80
E+

01
1.
72
E-

02

2
0.
15

5.
13
2E

-0
2

1.
72
6E

-0
1
±

4.
27
E-

02
2.
59
0E

+
06
±

2.
97
E+

05
3.
75
19
E-

01
±

1.
13
E-

03
2.
57
E+

06
±

2.
38
E+

05
2.
63
E-

01
4.
39
7E

-0
1

2.
32

0.
25

8.
40
1E

-0
2

4.
51
7E

-0
2
±

7.
54
E-

03
1.
44
0E

+
06
±

2.
48
E+

05
7.
59
37
E-

01
±

3.
11
E-

03
2.
14
0E

+
06
±

1.
39
E+

05
5.
08
E-

02
5.
94
8E

-0
2

1.
68
E+

01
0.
35

7.
94
7E

-0
2

1.
94
7E

-0
2
±

3.
99
E-

03
3.
84
5E

+
06
±

7.
49
E+

05
8.
43
51
E-

01
±

4.
75
E-

03
1.
63
4E

+
06
±

1.
23
E+

05
3.
84
E-

01
2.
26
1E

-0
2

4.
83
E+

01

4
0.
15

6.
34
8E

-0
2

4.
08
5E

-0
2
±

2.
50
E-

03
1.
43
3E

+
07
±

1.
30
E+

06
5.
83
47
E-

04
±

2.
14
E-

05
4.
51
9E

+
06
±

3.
21
E+

05
1.
03
E+

01
6.
85
E+

02
2.
13
E-

04
0.
25

4.
24
2E

-0
2

5.
50
9E

-0
2
±

2.
06
E-

02
2.
88
00
E+

06
±

9.
27
E+

04
8.
59
E-

04
±

1.
01
E-

03
3.
67
4E

+
06
±

4.
45
E+

05
1.
10
E-

03
6.
41
5E

+
01

2-
43
E-

04
0.
35

6.
53
0E

-0
2

6.
33
1E

-0
2
±

2.
73
E-

03
2.
91
0E

+
06
±

1.
30
E+

05
8.
70
5E

-0
4
±

1.
04
E-

03
4.
12
E+

06
±

1.
02
E+

06
3.
51
E-

01
7.
31
3E

+
02

1.
36
E-

02

Ta
bl
e
6.
7
–
C
om

pa
ris

on
of

th
e
pe

rfo
rm

an
ce

of
th
e
PW

Q
ua

d
ce
lls

w
ith

V
EG

A
S
fo
r
2
di
m
en
sio

ns
.
V
R
F

st
an

ds
fo
r
th
e
m
ea
n
re
du

ct
io
n

fa
ct
or

of
th
e
va
ria

nc
e.

#
pe

ak
s

P
ea
k
w
id
th

O
ri
gi
na

l
va
ri
an

ce
N
IS

V
E
G
A
S

#
SD

V
R
F
ra
ti
o

re
l.

sp
ee
du

p
V
R
F

#
E
va
l

V
R
F

#
E
va
l

1
0.
15

1.
24

2E
-0
3

1.
34

3E
-0
2
±

5.
41

E-
03

3.
91

5E
+
06
±

9.
44

E+
05

1.
56

16
E-

04
±

2.
30

E-
06

3.
41

2+
06
±
2.
46

E+
05

1.
10

E-
01

8.
57

1E
+
01

1.
17

E-
02

0.
25

8.
16

3E
-0
2

4.
10

8E
-0
2
±

4.
67

E-
03

6.
14

0E
+
06
±

7.
04

E+
05

3.
12

60
E-

04
±

1.
05

E-
05

4.
43

E+
06
±
1.
03

E+
06

4.
99

E-
02

1.
32

E+
02

7.
69

E-
02

0.
35

2.
09

8E
-0
2

7.
33

7E
-0
2
±

9.
31

E-
03

6.
08

E+
06
±

1.
06

E+
06

8.
65

9E
-0
4
±

1.
95

E-
05

4.
12

75
+
06
±
1.
38

E+
05

1.
50

E-
01

8.
47

3E
+
01

1.
19

E-
02

2
0.
15

2.
52

4E
-0
3

1.
80

9E
-0
2
±

1.
69

E-
03

4.
31

0E
+
06
±

7.
50

E+
05

2.
69

71
E-

01
±

1.
44

E-
03

3.
25

4E
+
06
±
2.
46

E+
05

5.
41

E-
01

6.
70

6E
-0
2

1.
49

E+
01

0.
25

2.
61

7E
-0
2

6.
70

E-
02
±

1.
11

E-
02

1.
54

0E
+
06
±

2.
04

E+
05

7.
62

72
E-

01
±

4.
14

E-
03

2.
13

5E
+
06
±
3.
34

E+
05

7.
34

E-
02

8.
79

0E
-0
2

1.
15

E+
01

0.
35

3.
19

3E
-0
2

9.
28

6E
-0
2
±

7.
06

E-
03

4.
67

E+
06
±

1.
06

E+
06

9.
17

58
E-

01
±

3.
84

E-
03

6.
23

E+
05
±
1.
34

E+
05

3.
32

E-
01

1.
01

2E
-0
1

9.
90

4
0.
15

4.
39

5E
-0
3

3.
26

2E
-0
2
±

4.
41

E-
03

2.
81

0E
+
06
±

2.
70

E+
05

2.
39

65
0E

-0
1
±

6.
52

E-
04

3.
27

4E
+
06
±
4.
53

E+
05

1.
23

E-
01

1.
36

1E
-0
1

7.
35

0.
25

2.
18

7E
-0
2

7.
02

1E
-0
2
±

6.
18

E-
03

4.
72

E+
06
±

1.
12

E+
06

7.
05

82
E-

01
±

2.
23

E-
03

2.
50

3E
+
06
±
2.
34

8E
+
05

6.
04

E-
01

9.
94

8E
-0
2

1.
01

E+
01

0.
35

5.
79

2E
-0
2

9.
90

57
E-

02
±

7.
34

E-
03

2.
81

0E
+
06
±

4.
79

E+
05

8.
25

41
E-

01
±

4.
68

E-
03

1.
53

4E
+
06
±
5.
32

E+
05

6.
34

E-
01

1.
20

0E
-0
1

8.
33

8
0.
15

8.
72

4E
-0
3

3.
86

2E
-0
2
±

1.
82

E-
03

3.
59

0E
+
06
±

5.
72

E+
05

1.
80

05
0E

-0
1
±

5.
93

E-
04

2.
56

0E
+
05
±
1.
43

E+
05

3.
49

E-
02

2.
14

5E
-0
1

4.
66

0.
25

4.
96

2E
-0
3

9.
30

6E
-0
2
±

3.
80

E-
03

2.
56

0E
+
06
±

2.
89

E+
05

6.
19

81
E-

01
±

2.
05

E-
03

2.
20

3E
+
06
±
3.
31

8E
+
05

3.
51

E-
02

1.
50

1E
-0
1

6.
66

0.
35

1.
23

3E
-0
1

9.
98

29
E-

02
±

4.
55

E-
03

1.
16

5E
+
06
±

1.
25

E+
05

6.
61

57
E-

01
±

2.
41

E-
03

2.
57

0E
+
06
±
2.
32

E+
05

1.
80

E-
01

1.
50

9E
-0
1

6.
67

Ta
bl
e
6.
8
–
C
om

pa
ris

on
of

th
e
pe

rfo
rm

an
ce

of
th
e
PW

Q
ua

d
ce
lls

w
ith

V
EG

A
S
fo
r
4
di
m
en
sio

ns
.
V
R
F

st
an

ds
fo
r
th
e
m
ea
n
re
du

ct
io
n

fa
ct
or

of
th
e
va
ria

nc
e.

#
pe

ak
s

P
ea
k
w
id
th

O
ri
gi
na

l
va
ri
an

ce
N
IS

V
E
G
A
S

#
SD

V
R
F
ra
ti
o

re
l.
sp
ee
du

p
V
R
F

#
E
va
l

V
R
F

#
E
va
l

1
0.
15

1.
70
3E

-0
6

9.
29
E-

03
±

2.
59
E-

03
1.
54
0E

+
06
±

2.
89
E+

05
5.
75
19
E-

06
±

1.
35
E-

07
4.
34
0E

+
06
±
3.
45
E+

05
8.
54
E-

01
2.
47
7E

+
01

4.
05
E-

02
0.
25

9.
32
5E

-0
5

7.
99
8E

-0
2
±

6.
64
E-

03
4.
70
0E

+
06
±

8.
72
E+

05
9.
49
45
E-

06
±

2.
04
E-

07
2.
46
3E

+
06
±
1.
92
E+

05
1.
34

8.
20
6E

+
03

1.
22
E-

04
0.
35

1.
11
8E

-0
3

4.
52
0E

-0
2
±

2.
32
E-

03
3.
61
4E

+
07
±

8.
27
E+

06
4.
88
32
E-

05
±

9.
17
E-

06
1.
13
4E

+
07
±
2.
94
E+

06
7.
76
E-

01
9.
25
7E

+
02

1.
08
E-

03

2
0.
15

2.
56
3E

-0
6

5.
65
E-

02
±

1.
25
E-

02
1.
79
0E

+
06
±

3.
23
E+

05
1.
77
4E

-0
1
±

1.
78
E-

02
2.
79
3E

+
06
±

4.
36
E+

05
6.
97
E-

02
3.
18
5E

-0
1

3.
14

0.
25

2.
93
2E

-0
4

8.
76
7E

-0
2
±

4.
53
E-

03
3.
56
0E

+
06
±

2.
89
E+

05
7.
06
5E

-0
1
±

1.
66
E-

02
5.
53
2E

+
06
±
3.
23
E+

05
5.
71
E-

01
1.
24
1E

-0
1

8.
06

0.
35

2.
59
3E

-0
3

4.
32
5E

-0
1
±

8.
43
E-

02
1.
79
0E

+
06
±

4.
33
E+

05
9.
43
6E

-0
1
±

1.
22
E-

02
1.
74
5E

+
06
±
4.
23
E+

05
7.
10
E-

01
4.
58
3E

-0
1

2.
18

4
0.
15

8.
04
1E

-0
6

1.
27
8E

-0
2
±

8.
06
E-

03
2.
16
5E

+
06
±

5.
15
E+

05
4.
01
58
E-

01
±

1.
71
E-

03
7.
78
9E

+
06
±
4.
38
E+

05
1.
02
E+

00
2.
35
8E

-0
2

42
.6
E+

02
0.
25

4.
23
2E

-0
4

2.
29
1E

-0
1
±

1.
48
E-

02
5.
04
0E

+
06
±

5.
40
E+

05
6.
73
35
E-

01
±

7.
33
E-

03
1.
24
6E

+
07
±
2.
93
E+

06
9.
99
E-

01
3.
40
3E

-0
1

2.
93

0.
35

5.
63
2E

-0
3

3.
89
E-

01
±

1.
15
E-

01
7.
06
0E

+
06
±

7.
07
E+

05
9.
16
24
E-

01
±

6.
75
E-

03
1.
23
3E

+
06
±
3.
32
E+

05
2.
07
E-

01
3.
51
6E

-0
1

2.
85

8
0.
15

1.
37
0E

-0
5

1.
07
29
E-

01
±

2.
68
E-

03
6.
23
E+

06
±

1.
82
E+

06
1.
27
38
E-

01
±

9.
36
E-

03
1.
01
2E

+
07
±
4.
32
E+

06
7.
78
E-

01
8.
44
0E

-0
1

1.
18

0.
25

1.
65
4E

-0
3

2.
69
9E

-0
1
±

2.
46
E-

02
5.
70
E+

06
±

1.
12
E+

06
6.
49
77
E-

01
±

5.
13
E-

03
1.
32
4E

+
07
±
1.
34
E+

06
3.
67
E-

02
4.
15
4E

-0
1

2.
41

0.
35

5.
92
3E

-0
3

7.
96
29
E-

01
±

3.
63
E-

03
4.
56
0E

+
06
±

5.
00
E+

05
8.
60
94
E-

01
±

5.
29
E-

03
2.
36
2E

+
06
±
1.
34
E+

05
2.
05
E-

01
9.
18
6E

-0
1

1.
09

Ta
bl
e
6.
9
–
C
om

pa
ris

on
of

th
e
pe

rfo
rm

an
ce

of
th
e
PW

Q
ua

d
ce
lls

w
ith

V
EG

A
S
fo
r
8
di
m
en
sio

ns
.
V
R
F

st
an

ds
fo
r
th
e
m
ea
n
re
du

ct
io
n

fa
ct
or

of
th
e
va
ria

nc
e.

74

Appendix

#
pe

ak
s

P
ea
k
w
id
th

O
ri
gi
na

l
va
ri
an

ce
N
IS

V
E
G
A
S

#
SD

V
R
F
ra
ti
o

re
l.

sp
ee
du

p
V
R
F

#
E
va
l

V
R
F

#
E
va
l

1
0.
15

8.
90

1E
-1
6

2.
27

4E
-0
5
±

1.
78

E-
06

6.
78

E+
06
±

1.
46

E+
06

9.
72

82
3E

-0
4
±

1.
31

E-
07

1.
03

4E
+
06
±
3.
34

E+
05

7.
73

E-
01

2.
33

7E
-0
1

1.
37

E+
01

0.
25

3.
38

0E
-0
9

1.
13

4E
-0
2
±

3.
06

E-
03

2.
36

4E
+
06
±

1.
76

E+
05

1.
17

02
2E

-0
7
±

3.
65

E-
08

1.
20

4E
+
07
±
2.
23

E+
06

3.
31

E-
01

9.
69

2E
+
04

1.
03

E-
5

0.
35

1.
49

5E
-0
6

8.
5E

-0
3
±

2.
90

E-
02

9.
60

E+
06
±

2.
06

E+
06

1.
73

55
E-

06
±

1.
14

E-
05

1.
72

3E
+
07
±
3.
34

E+
06

1.
82

E+
00

4.
87

8E
+
03

2.
05

E-
04

2
0.
15

8.
94

7E
-1
6

8.
82

62
51

E-
06
±

3.
74

E-
09

2.
23

5E
+
06
±

5.
73

E+
05

3.
54

54
E-

05
±

7.
87

E-
07

2.
23

0E
+
06
±
3.
32

E+
05

4.
23

E-
01

1.
12

E-
01

2.
36

0.
25

3.
17

2E
-0
9

3.
48

E-
03
±

1.
77

E-
03

1.
66

5E
+
06
±

4.
73

E+
05

8.
45

1E
-0
4
±

1.
58

E-
05

1.
30

4E
+
07
±
4.
23

E+
06

3.
90

E-
03

4.
12

3E
+
00

2.
24

E-
01

0.
35

1.
49

5E
-0
6

7.
49

E-
02
±

3.
28

E-
02

1.
54

0E
+
06
±

5.
00

E+
05

1.
85

8E
+
00
±

4.
12

E-
01

1.
32

3E
+
07
±
3.
43

E+
06

6.
54

7.
49

E-
02

*
1.
33

E+
01

*

4
0.
15

1.
42

1E
-1
4

3.
18

43
E-

07
±

1.
78

E-
08

8.
76

E+
06
±

2.
53

E+
06

3.
23

6E
-0
5
±

3.
04

E-
06

2.
34

3E
+
06
±
4.
23

E+
05

4.
33

E-
01

4.
14

E-
02

2.
41

E+
01

0.
25

1.
99

6E
-0
8

7.
69

E-
03
±

2.
57

E-
03

1.
00

5E
+
06
±

1.
03

E+
05

2.
03

E+
01
±

1.
99

E+
01

1.
29

40
E+

07
±
2.
43

E+
06

7.
58

E-
01

7.
69

E-
03

*
1.
30

E+
02

*
0.
35

1.
63

4E
-0
6

9.
82

E-
02
±

9.
17

E-
02

4.
06

0E
+
06
±

9.
13

E+
05

2.
84

9E
+
00
±

5.
30

E-
01

1.
32

4E
+
07
±
5.
34

E+
06

8.
87

E-
01

9.
82

E-
02

*
1.
01

E+
01

8
0.
15

2.
28

7E
-1
4

1.
91

E-
05
±

1.
11

E-
05

1.
29

0E
+
06
±

1.
44

E+
05

6.
24

E-
02
±

1.
97

E-
02

2.
30

71
E+

06
±
9.
3E

+
04

4
5.
11

E-
01

3.
06

6E
-0
4

3.
2E

+
03

0.
25

2.
34

8E
-0
8

4.
18

E-
04
±

3.
98

E-
04

1.
16

5E
+
06
±

1.
25

E+
05

2.
37

7E
+
00
±

7.
82

E-
01

1.
43

0E
+
07
±
5.
33

E+
06

1.
62

4.
18

E-
04

*
2.
39

E+
03

*
0.
35

3.
78

8E
-0
6

1.
57

E-
01
±

1.
73

E-
01

7.
96

E+
06
±

1.
55

E+
06

1.
26

1E
+
00
±

1.
04

E-
01

1.
34

E+
07
±
4.
23

E+
08

1.
30

E+
00

1.
58

E-
01

*
6.
32

Ta
bl
e
6.
10

–
C
om

pa
ris

on
of

th
e
pe

rfo
rm

an
ce

of
th
e
PW

Q
ua

d
ce
lls

w
ith

V
EG

A
S
fo
r
16

di
m
en
sio

ns
.
V
R
F

st
an

ds
fo
r
th
e
m
ea
n
re
du

ct
io
n

fa
ct
or

of
th
e
va
ria

nc
e.

Fo
rs

ta
rr
ed

va
lu
es
,t
he

ra
tio

wa
st

ak
en

be
tw

ee
n
th
e
ne
ur
al

im
po

rt
an

ce
sa
m
pl
in
g
va
ria

nc
e
an

d
th
e
va
ria

nc
e
w
ith

ou
t

im
po

rt
an

ce
sa
m
pl
in
g,

as
V
EG

A
S
di
d
no

t
co
nv

er
ge

he
re

#
pe

ak
s

P
ea
k
w
id
th

O
ri
gi
na

l
va
ri
an

ce
N
IS

V
E
G
A
S

#
SD

V
R
F
ra
ti
o

re
l
sp
ee
du

p
V
R
F

#
E
va
l

V
R
F

#
E
va
l

1
0.
25

1.
49

8E
-1
8

3.
10

E-
04
±

2.
63

E-
04

1.
32

3E
+
06
±

2.
78

E+
05

1.
42

85
E-

03
±

7.
27

E-
05

2.
03

2E
+
06
±
3.
43

E+
05

9.
50

E-
01

2.
17

0E
-0
1

4.
60

0.
35

1.
09

1E
-1
1

6.
07

87
E-

07
±

8.
88

E-
05

2.
02

3E
+
06
±

2.
38

E+
05

2.
08

39
53

E-
06
±

6.
12

E-
08

5.
53

4E
+
07
±
4.
23

E+
06

3.
70

E-
01

2.
76

5E
-0
1

3.
60

2
0.
25

1.
56

1E
-2
2

1.
28

E-
04
±

2.
52

E-
04

4.
17

3E
+
06
±

3.
34

E+
05

1.
44

3E
+
02
±

2.
74

E+
01

2.
32

3+
06
±
5.
32

E+
05

1.
54

1.
29

E-
04

*
7.
74

E+
03

*
0.
35

1.
26

2E
-1
3

3.
82

E-
03
±

2.
74

E-
03

7.
87

3E
+
06
±

6.
74

E+
05

3.
67

5E
+
00
±

1.
39

E-
01

1.
53

0E
+
07
±
2.
34

E+
06

7.
80

E-
01

3.
82

E-
03

*
2.
62

E+
02

*

4
0.
25

6.
22

2E
-2
3

8.
91

E-
03
±

3.
31

E-
03

6.
13

3E
+
06
±

5.
24

E+
05

5.
31

E
±

4.
38

E-
01

1.
02

3E
+
06
±
7.
39

E+
05

4.
68

E-
01

8.
91

E-
03

1.
12

E+
02

0.
35

3.
35

6E
-1
4

5.
39

E-
05
±

3.
29

E-
05

4.
29

4E
+
06
±

3.
94

E+
05

1.
38

4E
-0
1
±

8.
92

E-
02

3.
18

3E
+
07
±
6.
34

E+
06

1.
04

E+
00

3.
89

5E
-0
4

2.
57

E+
02

8
0.
25

5.
34

6E
-2
0

5.
12

E-
04
±

3.
07

E-
04

4.
65

3E
+
06
±

5.
32

E+
01

6.
58

E+
00
±

3.
33

E+
00

1.
02

3E
+
06
±
9.
34

E+
05

4.
98

E-
01

5.
12

E-
04

*
1.
95

E+
03

*
0.
35

2.
69

3E
-1
2

1.
16

4E
-0
3
±

5.
27

E-
04

1.
34

3E
+
06
±

2.
36

E+
05

1.
55

E+
02
±

1.
30

E+
02

1.
23

8E
+
07
±
6.
23

E+
06

2.
85

E-
01

1.
16

4E
-0
3
*

8.
59

E+
02

*

Ta
bl
e
6.
11

–
C
om

pa
ris

on
of

th
e
pe

rfo
rm

an
ce

of
th
e
PW

Q
ua

d
ce
lls

w
ith

V
EG

A
S
fo
r
32

di
m
en
sio

ns
.
V
R
F

st
an

ds
fo
r
th
e
m
ea
n
re
du

ct
io
n

fa
ct
or

of
th
e
va
ria

nc
e.

Fo
rs

ta
rr
ed

va
lu
es
,t
he

ra
tio

wa
st

ak
en

be
tw

ee
n
th
e
ne
ur
al

im
po

rt
an

ce
sa
m
pl
in
g
va
ria

nc
e
an

d
th
e
va
ria

nc
e
w
ith

ou
t

im
po

rt
an

ce
sa
m
pl
in
g,

as
V
EG

A
S
di
d
no

t
co
nv

er
ge

he
re
.
Ru

ns
w
ith

sm
al
le
r
pe

ak
w
id
th
s
fa
ile
d
fo
r
th
e
ne
ur
al

im
po

rt
an

ce
sa
m
pl
in
g.

75

References

[1] B. R. Webber, « Monte Carlo simulation of hard hadronic processes », Annual Review of Nuclear
and Particle Science 36, 253 (1986).

[2] A. Buckley, J. Butterworth, S. Gieseke, D. Grellscheid, S. Höche, H. Hoeth, F. Krauss, L. Lön-
nblad, E. Nurse, P. Richardson and et al., « General-purpose event generators for LHC physics »,
Physics Reports 504, 145 (2011).

[3] The ATLAS collaboration (2020) - Computing and Software - Public Results, https://twiki.

cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults, Accessed:
2020-03-30.

[4] A. Sirunyan et al., « Search for black holes and other new phenomena in high-multiplicity final
states in proton–proton collisions at s=13TeV », Physics Letters B 774, 279 (2017).

[5] J. A. Evans, Y. Kats, D. Shih and M. J. Strassler, « Toward full LHC coverage of natural
supersymmetry », Journal of High Energy Physics 2014 (2014).

[6] S. Höche, S. Prestel and H. Schulz, « Simulation of vector boson plus many jet final states at the
high luminosity LHC », Physical Review D 100 (2019).

[7] A. Buckley, Computational challenges for MC event generation, 2019, arXiv:1908.00167 [hep-ph].

[8] G. P. Lepage, « A new algorithm for adaptive multidimensional integration », Journal of Com-
putational Physics 27, 192 (1978).

[9] G. P. Lepage, VEGAS-An adaptive multi-dimensional integration program, tech. rep., CLNS-
80/447 (1980).

[10] J. H. Friedman and M. H. Wright, « A nested partitioning procedure for numerical multiple
integration », ACM Transactions on Mathematical Software (TOMS) 7, 76 (1981).

[11] W. H. Press and G. R. Farrar, « Recursive stratified sampling for multidimensional Monte Carlo
integration », Computers in Physics 4, 190 (1990).

[12] T. Ohl, « Vegas revisited: Adaptive Monte Carlo integration beyond factorization », Computer
Physics Communications 120, 13 (1999).

76

https://doi.org/10.1016/j.physrep.2011.03.005
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults
https://doi.org/https://doi.org/10.1016/j.physletb.2017.09.053
https://doi.org/10.1007/jhep07(2014)101
https://doi.org/10.1103/physrevd.100.014024
https://arxiv.org/abs/1908.00167
https://doi.org/10.1016/s0010-4655(99)00209-x
https://doi.org/10.1016/s0010-4655(99)00209-x

References

[13] S. Jadach, « Foam: Multi-dimensional general purpose Monte Carlo generator with self-adapting
simplical grid », Computer Physics Communications 130, 244 (2000).

[14] T. Hahn, « Cuba—a library for multidimensional numerical integration », Computer Physics
Communications 168, 78 (2005).

[15] K. Kroeninger, S. Schumann and B. Willenberg, (MC)**3 – a Multi-Channel Markov Chain
Monte Carlo algorithm for phase-space sampling, 2014, arXiv:1404.4328 [hep-ph].

[16] S. Jadach, « Foam: A general-purpose cellular Monte Carlo event generator », Computer Physics
Communications 152, 55 (2003).

[17] W. Kilian, T. Ohl and J. Reuter, « WHIZARD—simulating multi-particle processes at LHC and
ILC », The European Physical Journal C 71 (2011).

[18] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, H.-S. Shao, T. Stelzer,
P. Torrielli and M. Zaro, « The automated computation of tree-level and next-to-leading order
differential cross sections, and their matching to parton shower simulations », Journal of High
Energy Physics 2014 (2014).

[19] D. Bourilkov, « Machine and deep learning applications in particle physics », International Journal
of Modern Physics A 34, 1930019 (2019).

[20] J. Bendavid, Efficient Monte Carlo Integration Using Boosted Decision Trees and Generative
Deep Neural Networks, 2017, arXiv:1707.00028 [hep-ph].

[21] M. D. Klimek and M. Perelstein, Neural Network-Based Approach to Phase Space Integration,
2018, arXiv:1810.11509 [hep-ph].

[22] D. J. Rezende and S. Mohamed, « Variational inference with normalizing flows », arXiv preprint
arXiv:1505.05770 (2015).

[23] G. Papamakarios, E. Nalisnick, D. J. Rezende, S. Mohamed and B. Lakshminarayanan, Normal-
izing Flows for Probabilistic Modeling and Inference, 2019, arXiv:1912.02762 [stat.ML].

[24] L. Dinh, D. Krueger and Y. Bengio, NICE: Non-linear Independent Components Estimation,
2014, arXiv:1410.8516 [cs.LG].

[25] L. Dinh, J. Sohl-Dickstein and S. Bengio, Density estimation using Real NVP, 2016, arXiv:1605.

08803 [cs.LG].

[26] T. Müller, B. McWilliams, F. Rousselle, M. Gross and J. Novák, Neural Importance Sampling,
2018, arXiv:1808.03856 [cs.LG].

[27] C. Durkan, A. Bekasov, I. Murray and G. Papamakarios, Neural Spline Flows, 2019, arXiv:1906.

04032 [stat.ML].

[28] C. Gao, S. Hoeche, J. Isaacson, C. Krause and H. Schulz, Event Generation with Normalizing
Flows, 2020, arXiv:2001.10028 [hep-ph].

[29] E. Bothmann, T. Janßen, M. Knobbe, T. Schmale and S. Schumann, Exploring phase space with
Neural Importance Sampling, 2020, arXiv:2001.05478 [hep-ph].

77

https://doi.org/10.1016/s0010-4655(00)00047-3
https://doi.org/10.1016/j.cpc.2005.01.010
https://doi.org/10.1016/j.cpc.2005.01.010
https://arxiv.org/abs/1404.4328
https://doi.org/10.1016/s0010-4655(02)00755-5
https://doi.org/10.1016/s0010-4655(02)00755-5
https://doi.org/10.1140/epjc/s10052-011-1742-y
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1007/jhep07(2014)079
https://doi.org/10.1142/s0217751x19300199
https://doi.org/10.1142/s0217751x19300199
https://arxiv.org/abs/1707.00028
https://arxiv.org/abs/1810.11509
https://arxiv.org/abs/1912.02762
https://arxiv.org/abs/1410.8516
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1808.03856
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/1906.04032
https://arxiv.org/abs/2001.10028
https://arxiv.org/abs/2001.05478

References

[30] C. Gao, J. Isaacson and C. Krause, i-flow: High-dimensional Integration and Sampling with
Normalizing Flows, 2020, arXiv:2001.05486 [physics.comp-ph].

[31] V. Del Duca, C. Duhr, R. Haindl, A. Lazopoulos and M. Michel, « Tree-level splitting amplitudes
for a quark into four collinear partons », JHEP 02, 189 (2020), arXiv:1912.06425 [hep-ph].

[32] R. Kleiss and R. Pittau, « Weight optimization in multichannel Monte Carlo », Computer Physics
Communications 83, 141 (1994).

[33] S. Carrazza and J. M. Cruz-Martinez, VegasFlow: accelerating Monte Carlo simulation across
multiple hardware platforms, 2020, arXiv:2002.12921 [physics.comp-ph].

[34] S. Otten, S. Caron, W. de Swart, M. van Beekveld, L. Hendriks, C. van Leeuwen, D. Podareanu,
R. R. de Austri and R. Verheyen, Event Generation and Statistical Sampling for Physics with
Deep Generative Models and a Density Information Buffer, 2019, arXiv:1901.00875 [hep-ph].

[35] R. Di Sipio, M. F. Giannelli, S. K. Haghighat and S. Palazzo, « DijetGAN: a Generative-
Adversarial Network approach for the simulation of QCD dijet events at the LHC », Journal
of High Energy Physics 2019 (2019).

[36] A. Butter, T. Plehn and R. Winterhalder, « How to GAN LHC events », SciPost Physics 7 (2019).

[37] I. Goodfellow, Y. Bengio and A. Courville, Deep Learning, http://www.deeplearningbook.org

(MIT Press, 2016).

[38] A. Pinkus, « Approximation theory of the MLP model in neural networks », Acta Numerica 8,
143 (1999).

[39] P. Kidger and T. Lyons, Universal Approximation with Deep Narrow Networks, 2019, arXiv:1905.

08539 [cs.LG].

[40] L. Bottou, « Stochastic Learning », in Advanced Lectures on Machine Learning, edited by O.
Bousquet and U. von Luxburg, Lecture Notes in Artificial Intelligence, LNAI 3176 (Springer
Verlag, Berlin, 2004), pp. 146–168.

[41] PyTorch Documentation, (2020) https://pytorch.org/docs/stable/torch.html (visited on
25/05/2020).

[42] S. Ioffe and C. Szegedy, Batch Normalization: Accelerating Deep Network Training by Reducing
Internal Covariate Shift, 2015, arXiv:1502.03167 [cs.LG].

[43] D. P. Kingma and J. Ba, Adam: A Method for Stochastic Optimization, 2014, arXiv:1412.6980

[cs.LG].

[44] Y. Yao, L. Rosasco and A. Caponnetto, « On early stopping in gradient descent learning »,
Constr. Approx, 289 (2007).

[45] Documentation of the vegas pacakge, (2020) https://vegas.readthedocs.io/en/latest/

index.html (visited on 25/05/2020).

[46] J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, « MadGraph 5 : Going Beyond »,
JHEP 06, 128 (2011), arXiv:1106.0522 [hep-ph].

[47] S. Plätzer, RAMBO on diet, 2013, arXiv:1308.2922 [hep-ph].

78

https://arxiv.org/abs/2001.05486
https://doi.org/10.1007/JHEP02(2020)189
https://arxiv.org/abs/1912.06425
https://doi.org/10.1016/0010-4655(94)90043-4
https://doi.org/10.1016/0010-4655(94)90043-4
https://arxiv.org/abs/2002.12921
https://arxiv.org/abs/1901.00875
https://doi.org/10.1007/jhep08(2019)110
https://doi.org/10.1007/jhep08(2019)110
https://doi.org/10.21468/scipostphys.7.6.075
http://www.deeplearningbook.org
https://doi.org/10.1017/S0962492900002919
https://doi.org/10.1017/S0962492900002919
https://arxiv.org/abs/1905.08539
https://arxiv.org/abs/1905.08539
http://leon.bottou.org/papers/bottou-mlss-2004
https://pytorch.org/docs/stable/torch.html
https://arxiv.org/abs/1502.03167
https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980
https://vegas.readthedocs.io/en/latest/index.html
https://vegas.readthedocs.io/en/latest/index.html
https://doi.org/10.1007/JHEP06(2011)128
https://arxiv.org/abs/1106.0522
https://arxiv.org/abs/1308.2922

References

[48] R. Kleiss, W. Stirling and S. Ellis, « A new Monte Carlo treatment of multiparticle phase space
at high energies », Computer Physics Communications 40, 359 (1986).

[49] F. James, « Monte Carlo theory and practice », Reports on progress in Physics 43, 1145 (1980).

[50] R. D. Field, Applications of Perturbative QCD (Addison-Wesley, Redwood City, 1989).

[51] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr and G.
Watt, « LHAPDF6: parton density access in the LHC precision era », The European Physical
Journal C 75 (2015).

[52] R. D. Ball, V. Bertone, S. Carrazza, C. S. Deans, L. Del Debbio, S. Forte, A. Guffanti, N. P.
Hartland, J. I. Latorre, J. Rojo and et al., « Parton distributions with LHC data », Nuclear
Physics B 867, 244 (2013).

79

https://doi.org/https://doi.org/10.1016/0010-4655(86)90119-0
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1140/epjc/s10052-015-3318-8
https://doi.org/10.1016/j.nuclphysb.2012.10.003
https://doi.org/10.1016/j.nuclphysb.2012.10.003

List of Figures

1.1 The VEGAS grid for two aligned gaussian peaks. 8
1.2 The VEGAS grid for two non-aligned gaussian peaks. 9

2.1 A 2-layer fully connected NN (one hidden layer of 4 neurons and one output layer
with 2 neurons), and three inputs. The white circles are the artificial neurons. . . . 11

2.2 A sketch of the structure of an artificial neuron with three weighted inputs and an
activation function σ. 11

2.3 Schematic structure of a coupling layer. 15
2.4 A demonstration of the mapping for piecewise-linear cells in 1D. The orange dotted

line is the function to be learned, the blue line is the network prediction/the coupling
transform. 18

2.5 A demonstration of the mapping for piecewise-quadratic cells in 1D. The orange
dotted line is the function to be learned, the blue line is the network prediction/the
coupling transform. 19

3.1 A sketch of the structure of the code for the case of 2 coupling cells. Black are classes
with their most important properties, blue are methods and the red arrows indicate
their relations. 22

3.2 The structure of the rectangular neural network used for the coupling cells. Each
block refers to one of the repeating units. The number of these units is meant with
the length of the NN. The width refers to the shape of the linear transformation. The
shape of the last linear transformation is set by the number of parameters required
by the coupling cell. The red line symbolises the flow of calculation. 23

3.3 Stable (left) and instable (right) behaviour of the loss during the training 24
3.4 The untrained mapping of the affine (left) and piecewise-linear (right) coupling cell,

for a single cell in 2 dimensions. The peaked behaviour of the untrained affine
coupling cells reduces the ability to correctly train features. 25

80

List of Figures

3.5 The mapping of the affine coupling cell after training on a gaussian. A wrong local
minimum of the loss was found, referring to a vanishing Jacobian. 25

3.6 Plot of the "camel" function . 26
3.7 Plot of the slashed circle function . 27
3.8 The output of the piecewise-linear coupling cell after hyperparameter optimisation

in the best (left) and second best (right) configuration 28
3.9 The output of the piecewise-linear coupling cell for the slashed circle 29
3.10 The output of the piecewise-quadratic coupling cell in the optimal configuration (left)

and the second best (right) . 29
3.11 The output of the piecewise-quadratic coupling cell for the slashed circle 30
3.12 Overview of the minimal relative variance achieved of the different setups of the

piecewise-quadratic coupling cells versus the hyperparameters of the setup. From
left to right: learning rate, number of bins, width of the NN, length of the NN. . . . 30

3.13 Overview of the minimal relative variance achieved in relation to the batch size and
the learning rate. 31

3.14 Time evolution of the mapping for the gaussian double peak for piecewise-linear
(top) and piecewise-quadratic (bottom) coupling cells. 32

3.15 Time evolution of the mapping for the slashed circle for piecewise-linear (top) and
piecewise-quadratic (bottom) coupling cells. 32

3.16 Bins of the first (left) and second (right) coupling cell of the optimal configuration.
Top: untrained, bottom: trained model. The axis parallel to the lines refers to the
non-transformed dimension (in the right image, this dimension was transformed by
the first coupling cell already), the position of the lines to the right bin boundary.
The colour encodes the value of the cumulative distribution function at the right bin
boundary, e.g. the value to which the input dimension will be transformed at the
bin boundary. 33

3.17 Left: the colour-encoded 2D plane. Each point got encoded in the RGB-scheme as
(x0, x1, 0.5). Middle: the same set of points after transformation with a model trained
on the double gaussian, but with the colour-encoding of their original position. Right:
the same, but mapped with a model trained on the slashed circle. 34

3.18 The adaptive grid of VEGAS at the end of the training for the gaussian peak. . . . 35
3.19 The adaptive grid of the VEGAS algorithm at the end of the training for the gaussian

double peak. Note that instead of two peaks, four were learned. 36
3.20 The output of the vegas grid for the slashed circle 36

4.1 The absolute speedup of neural importance sampling in dependency of the number
of peaks and dimensions. The colour encodes the logarithm of the speedup. Left:
peak width 0.15, in the middle 0.25 and to the right 0.35. White fields represent
non-existing data points. 41

81

List of Figures

4.2 The relative speedup between neural importance sampling and VEGAS in depend-
ency of the number of peaks and dimensions. The colour encodes the logarithm of
the relative speedup. Left: peak width 0.15, in the middle 0.25 and to the right 0.35.
White fields represent non-existing data points. 41

4.3 The trained model for the 4D double gaussian peak in multiple projections. 42
4.4 The trained model for the 4D mixed gaussian peaks in multiple projections. 43
4.5 Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian

double peak with peak width 0.25. 43
4.6 Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian

double peak with peak width 0.25. Top: data for the quarter which converged after
the smallest number of epochs. Lower: data for the quarter which converged after
the biggest number of epochs. 45

4.7 Distribution of the hyperparameters for the best runs in 8 dimensions of the gaussian
double peak with peak width 0.25. Top: data for the quarter which converged after
the shortest time. Lower: data for the quarter which converged after the longest time. 46

5.1 Comparison of the runtime of different implementations for the generation for 4-
particle massive final states. The batches were generated sequentially. 53

6.1 Histogram of the performance of the different setups during hyperparameter op-
timisation for e+e− → µ+µ−. The blue line is the variance reduction achieved by
VEGAS with its standard deviation. 59

6.2 Histogram of the performance of the different setups during hyperparameter optim-
isation for gu → gu. The blue line is the variance reduction achieved by VEGAS
with its standard deviation. The yellow bin refers to setups which could achieve no
variance better than 20% of the original value, the red bin refers to setups which
achieved no improvement. 60

6.3 Histogram of the performance of the different setups during hyperparameter optim-
isation for uc → ucg. The blue line is the variance reduction achieved by VEGAS
with its standard deviation. The yellow bin refers to setups which could achieve no
variance better than 20% of the original value, the red bin refers to setups which
achieved no improvement. 61

6.4 The (x0−x2) plane, referring to θ and the Bjorken x of the d, of the integrand (left)
and the trained model (right). 63

6.5 The plane of the Bjorken x of the integrand (left) and the trained model (right). . . 63
6.6 Both planes in the VEGAS grid. 64

82

List of Tables

2.1 Determination of the transformed dimensions for each coupling cell 17

3.1 Performance of the piecewise-linear coupling cell setups. 27
3.2 Performance of the piecewise-quadratic coupling cell setups. 28
3.3 Comparison of the performance of the piecewise-linear and piecewise quadratic coup-

ling cell. 31
3.4 Performance for the two integration strategies for the single gaussian peak. 35
3.5 Performance for the two integration strategies for the double gaussian peak. 36

5.1 Comparison of the maximal and average difference of 40000 runs between initial
and final state energies in the phase space generator for the generation of 4-particle
massive final states. 53

5.2 Unweighting efficiency of 40000 runs with massless massive final and initial states at
Ecm = 1000GeV2. 53

5.3 Comparison of the cross section calculated from the MadGraph matrix element,
either with the integrated integration tool or using the developed PyTorch PS gener-
ator and importance sampling with VEGAS.Ecm = 1000GeV2, pT,min = 10GeV, ηmax =
2.4,∆R,min = 0.4. 55

5.4 Comparison of the cross section calculated from the MadGraph matrix element,
either with the integrated integration tool or using the developed PyTorch PS gener-
ator and importance sampling with VEGASEcm = 1000GeV2, pT,min = 10GeV, ηmax =
2.4,∆R,min = 0.4, PDF set NNPDF23_nlo_as_0119. 56

6.1 Comparison of the performance of the best NIS setup and VEGAS for LO e+e− →
µ+µ−. VRF stands for the mean reduction factor of the variance. 59

6.2 Comparison of the performance of the best NIS setup and VEGAS for QCD LO
gu→ gu. VRF stands for the mean reduction factor of the variance. 60

6.3 Comparison of the performance of the NIS and VEGAS for QCD LO uc → ucg.
VRF stands for the mean reduction factor of the variance. 61

83

List of Tables

6.4 Comparison of the performance of the NIS and VEGAS for dd̄ → dd̄ via Z. VRF
stands for the mean reduction factor of the variance. 62

6.5 Overview of the result for dd̄→ dd̄ via Z for different integrators. 62
6.6 Overview of the result for dd̄ → dd̄ via Z for VEGAS at different values for the

number of function evaluations. 62
6.7 Comparison of the performance of the PWQuad cells with VEGAS for 2 dimensions.

VRF stands for the mean reduction factor of the variance. 74
6.8 Comparison of the performance of the PWQuad cells with VEGAS for 4 dimensions.

VRF stands for the mean reduction factor of the variance. 74
6.9 Comparison of the performance of the PWQuad cells with VEGAS for 8 dimensions.

VRF stands for the mean reduction factor of the variance. 74
6.10 Comparison of the performance of the PWQuad cells with VEGAS for 16 dimensions.

VRF stands for the mean reduction factor of the variance. For starred values, the
ratio was taken between the neural importance sampling variance and the variance
without importance sampling, as VEGAS did not converge here 75

6.11 Comparison of the performance of the PWQuad cells with VEGAS for 32 dimensions.
VRF stands for the mean reduction factor of the variance. For starred values, the
ratio was taken between the neural importance sampling variance and the variance
without importance sampling, as VEGAS did not converge here. Runs with smaller
peak widths failed for the neural importance sampling. 75

84

	Introduction
	Numerical integration
	Monte Carlo method
	Importance sampling
	Change of variables
	The VEGAS algorithm

	Neural importance sampling
	Basics of Neural Networks
	Normalising Flows
	Coupling cells
	Number of coupling cells
	Affine Coupling Transforms
	Piecewise-Linear Coupling Transforms
	Piecewise-Quadratic Coupling Transforms

	Neural importance sampling in two dimensions
	Implementation
	Comparison of piecewise-linear and piecewise quadratic coupling cells
	Performance of the piecewise-linear coupling cell
	Performance of the piecewise-quadratic coupling cell
	Analysis of the behaviour of piecewise-quadratic coupling cells

	Comparison to the VEGAS algorithm

	Investigation of the quadratic-coupling cells in higher dimensions
	Setup
	Results
	Analysis of the impact of hyperparameters

	Phase Space Generation
	RAMBO
	RAMBO on diet
	GPU compatible implementation
	Phase Space Cuts
	Hadronic Processes

	Neural importance sampling for cross section integrations
	Modification of the loss function
	Comparison of the neural importance sampling and VEGAS
	e+e- + -
	g u g u
	u c u c g
	d bard d bard via Z

	Conclusions and outlook
	Appendix
	References
	List of Figures
	List of Tables

